Electrogenerated chemiluminescence ethanol biosensor based on alcohol dehydrogenase functionalized Ru(bpy)3(2+) doped silica nanoparticles.

Biosens Bioelectron

Department of Chemistry and Key Laboratory of Analytical Sciences of the Ministry of Education, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

Published: September 2009

An ethanol biosensor, based on the electrogenerated chemiluminescence of Ru(bpy)(3)(2+)-doped silica nanoparticles (RuSiNPs), was investigated in this study. The biosensor was a modified glassy carbon electrode, where alcohol dehydrogenase was crosslinked to RuSiNPs, and then immobilized on the electrode surface using chitosan. The results indicated that the biosensor exhibited excellent performance during ethanol determination with a wide linear range (10(-7) to 10(-2) M), low detection limit (5.0x10(-8) M) and good stability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2009.06.030DOI Listing

Publication Analysis

Top Keywords

electrogenerated chemiluminescence
8
ethanol biosensor
8
biosensor based
8
alcohol dehydrogenase
8
silica nanoparticles
8
chemiluminescence ethanol
4
biosensor
4
based alcohol
4
dehydrogenase functionalized
4
functionalized rubpy32+
4

Similar Publications

Probing Single-Particle Electrocatalytic Stability: Electrogenerated Chemiluminescence Imaging of Nanoparticle Array.

J Phys Chem Lett

December 2024

College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China.

Understanding the stability of single nanoparticles is crucial for optimizing their performance in various applications, including catalysis. In this study, we employed electrochemiluminescence (ECL) imaging to investigate the temporal stability of individual Au and Pt nanoparticles within precisely engineered arrays. Our results reveal significant differences in the stability of Au and Pt NPs.

View Article and Find Full Text PDF

Coordination-Based Site-Specific Labeling Strategy for Electrogenerated Chemiluminescence Biosensing of Matrix Metalloproteinase 2.

Anal Chem

December 2024

Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, P. R. China.

Matrix metalloproteinase 2 (MMP-2) is an important biomarker for some diseases. Herein, one first-case coordination-based site-specific labeling strategy is proposed for electrogenerated chemiluminescence (ECL) biosensing of MMP-2 by employing an iridium(III) solvent complex as a signal reagent and a histidine (His)-containing peptide as a molecular recognition substrate. One ECL probe was prepared via coordination labeling of the His-containing peptide with one iridium(III) solvent complex ([(3-(2-pyridyl)benzoic acid)Ir(DMSO)Cl], Ir1-DMSO).

View Article and Find Full Text PDF

This study developed a dual-mode "on-off-on" sensor based on a bipyridine ruthenium metal-organic framework (Ru-MOF) and dual enzyme cleavage technology for the sensitive detection of the K-ras gene. The sensor combines electrogenerated chemiluminescence (ECL) and fluorescence (FL) detection modes, achieving high sensitivity and specificity in detecting the K-ras gene through catalytic hairpin assembly (CHA) and dual enzyme cleavage reactions. Experimental results showed that the detection limits for the K-ras gene were 0.

View Article and Find Full Text PDF

Microbubbles, inside-out microdroplets, act as extraordinary microreactors to facilitate thermodynamically unfavorable reactions in bulk solutions of water. We explored the formation of hydrogen peroxide (HO) and its sustained regeneration at the interface of water-gas microbubbles. For this purpose, the chemiluminescence of luminol was recorded by a digital camera to map the intensity of blue light emission over the time of about 20 min.

View Article and Find Full Text PDF

Analysis of single cancer cells is critical to obtain accurate patient diagnosis and prognosis. In this work, we report the selective dielectrophoretic capture and electrochemical analysis of single melanoma cells at an array of interlocked spiral bipolar electrodes (iBPEs). Following dielectrophoretic capture, individual melanoma cells are hydrodynamically transferred into picoliter-scale chambers for subsequent analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!