A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Metallomics integrated with proteomics in deciphering metal-related environmental issues. | LitMetric

Metallomics integrated with proteomics in deciphering metal-related environmental issues.

Biochimie

Department of Chemistry and Material Science, Faculty of Experimental Studies, University of Huelva, Campus de El Carmen, 21007 Huelva, Spain.

Published: October 2009

The present work shows the possibilities of metallomics to characterize metal-linking proteins in Mus Musculus that could be used in environmental assessment. The laboratory mouse M. musculus is used as reference of gene/protein sequence databases to address methodological approaches based on changes in transcripts regulation, proteins expression and metalloproteins profiles in the environmental bioindicator Mus spretus that has been demonstrated to be genetically homologous to M. Musculus. A metallomic approach using size exclusion chromatography with inductively coupled plasma-mass spectrometry detection (SEC-ICP-MS) was applied to cytosolic extracts from different M. musculus organs: lung, liver, spleen, kidney, brain, testicle, hearth and muscle. The resulting profiles of metallobiomolecules revealed the presence of a Cu-binding fraction in the 7-10 kDa range which was not present in the other tissues, can be associated to low molecular mass metallothionein-like proteins. The application of reverse phase chromatography with ICP-MS detection to this fraction gives two peaks that have been isolated for later identification by tandem mass spectrometry. The mass balance of copper evaluated by ICP-MS analysis of the digested brain fractions isolated by SEC and RP chromatography reveals good recoveries of the separations. The application of 2-DE to both crude brain extract and SEC fraction (7-10 kDa) reveals the considerably reduction of the number of proteins confirming that a good purification has been attained by SEC. This integration of metallomics with proteomics and transcriptomics can be useful in further studies involving the free-living mouse M. spretus for assessment of environmental issues.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biochi.2009.07.006DOI Listing

Publication Analysis

Top Keywords

environmental issues
8
fraction 7-10
8
7-10 kda
8
metallomics integrated
4
integrated proteomics
4
proteomics deciphering
4
deciphering metal-related
4
environmental
4
metal-related environmental
4
issues work
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!