The intermediate filament cytoskeleton is essential for the development and maintenance of normal tissue function. A number of diverse recent observations implicate these filament systems in sensing stress and protecting cells against its worst consequences. Cells expressing severely disruptive keratin mutations, characteristic of Dowling-Meara EBS, were previously reported to show elevated responses to physiological stress, and partial disassembly of cell junctions was reported upon direct mechanical stress to the cells. Gene expression microarray analysis has therefore been used here to examine the broad spectrum of effects of mutant keratins. Many genes associated with keratins and other components of the cytoskeleton showed altered expression levels; in particular, many cell junction components are down-regulated in EBS cells. That this is due to the expression of the mutant keratins, and not to other genetic variables, is supported by observation of the same effects in isogenic cells generated from wild type keratinocytes transfected with the same keratin mutations in the helix boundary motifs of K14 or K5. Whilst the mechanism underlying this is unclear, these findings may help to explain other aspects of EBS-associated pathology, such as faster scratch wound migration, or acantholysis (cell-cell separation) in patients' skin. Constitutive stress combined with constitutively weakened cell junctions may also contribute to a recently reported increased risk of non-melanoma skin cancer in EBS patients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2009.07.013DOI Listing

Publication Analysis

Top Keywords

keratin mutations
12
cell junctions
8
mutant keratins
8
cells
5
severe keratin
4
mutations induce
4
induce down-regulation
4
down-regulation junction
4
junction proteins
4
proteins keratinocytes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!