The electrocatalytic reduction of nitrite to NO by CuMe(2)bpaCl(2), which is a model for the active site of copper-containing nitrite reductase, incorporated into collagen film was investigated. The 77-K EPR spectrum of CuMe(2)bpaCl(2) in the collagen matrix revealed the typical axial signals (g(//)=2.26, g( perpendicular)=2.05, A(//)=16.4mT) of a tetragonal Cu(2+) chromophore. The redox potential, which is related to the Cu(+)/Cu(2+) couple, was -63mV (E=72mV) at pH 5.5. In the presence of nitrite, an increase in the cathodic current was observed in the cyclic voltammogram of CuMe(2)bpaCl(2) in the collagen matrix. Upon reaching -300mV, a linear generation of NO was observed for the CuMe(2)bpaCl(2)/collagen film-coated electrode. The relationship between the rate of NO generation and the nitrite concentration in solution was analyzed using the Michaelis-Menten equation, where V(max)=3.16nM s(-1) and K(m)=1.1mM at pH 5.5. The current increase and the reaction rate were dependent on the pH of the solution. The mechanism of nitrite reduction by the copper complex in the collagen matrix was the same mechanism as that of the enzyme in aqueous solution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioelechem.2009.06.013 | DOI Listing |
Int J Biol Sci
January 2025
Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, China.
Skin fibrotic diseases are characterized by abnormal fibroblast function and excessive deposition of extracellular matrix. Our previous single-cell sequencing results identified an enriched fibroblast subcluster in skin fibrotic tissues that highly expresses the actin cross-linking cytoskeletal protein Transgelin (TAGLN), which bridges the mechanical environment of tissues and cellular metabolism. Therefore, we aimed to investigate the role of TAGLN in the pathogenesis of skin fibrosis.
View Article and Find Full Text PDFLaryngoscope Investig Otolaryngol
February 2025
Objectives: This study aimed to investigate the histological and ultrastructural features of the elastic cartilage at the tip of the vocal process in the arytenoid cartilage, which is essential for laryngeal biomechanics.
Methods: Five larynges, including the vocal folds and epiglottis, were examined using transmission electron microscopy. The elastic cartilage at the tip of the vocal process was compared to the epiglottic cartilage within the same larynx to elucidate structural differences.
In Silico Pharmacol
January 2025
College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao, 266580 China.
Matrix metalloproteinase-8 (MMP-8), a type II collagenase, is a key enzyme in the degradation of collagens and is implicated in various pathological processes, making it a promising target for drug discovery. Despite advancements in the development of MMP-8 inhibitors, concerns over potential adverse effects persist. This study aims to address these concerns by focusing on the development of novel compounds with improved safety profiles while maintaining efficacy.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China. Electronic address:
Ultraviolet B (UVB) irradiation from sunlight is one of the primary environmental factors that causes photodamage to the skin. The aim of this study was to prepare succinyl-chitosan oligosaccharide (SU-COS) and evaluate its protective effects and related molecular mechanisms against UVB-induced photodamage for the first time. SU-COS (substitution degree: 69.
View Article and Find Full Text PDFDNA Cell Biol
January 2025
Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China.
Liver fibrosis, one of the main histological determinants of various chronic liver diseases, currently lacks effective treatment. Hepatic stellate cells (HSCs) are pivotal in the production of extracellular matrix and amplify the fibrogenic response. Inhibiting the activation of HSCs or promoting the senescence of activated HSCs is crucial for the regression of liver fibrosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!