The head pose estimation problem is well known to be a challenging task in computer vision and is a useful tool for several applications involving human-computer interaction. This problem can be stated as a regression one where the input is an image and the output is pan and tilt angles. Finding the optimal regression is a hard problem because of the high dimensionality of the input (number of image pixels) and the large variety of morphologies and illumination. We propose a new method combining a boosting strategy for feature selection and a neural network for the regression. Potential features are a very large set of Haar-like wavelets which are well known to be adapted to face image processing. To achieve the feature selection, a new Fuzzy Functional Criterion (FFC) is introduced which is able to evaluate the link between a feature and the output without any estimation of the joint probability density function as in the Mutual Information. The boosting strategy uses this criterion at each step: features are evaluated by the FFC using weights on examples computed from the error produced by the neural network trained at the previous step. Tests are carried out on the commonly used Pointing 04 database and compared with three state-of-the-art methods. We also evaluate the accuracy of the estimation on FacePix, a database with a high angular resolution. Our method is compared positively to a Convolutional Neural Network, which is well known to incorporate feature extraction in its first layers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neunet.2009.06.039 | DOI Listing |
Clin Exp Nephrol
January 2025
Kawasaki Medical School, Department of Nephrology and Hypertension, Kurashiki, Japan.
Background: Chronic kidney disease (CKD) represents a significant public health challenge, with rates consistently on the rise. Enhancing kidney function prediction could contribute to the early detection, prevention, and management of CKD in clinical practice. We aimed to investigate whether deep learning techniques, especially those suitable for processing missing values, can improve the accuracy of predicting future renal function compared to traditional statistical method, using the Japan Chronic Kidney Disease Database (J-CKD-DB), a nationwide multicenter CKD registry.
View Article and Find Full Text PDFBrain Struct Funct
January 2025
Department of Psychiatry, Psychotherapy and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen, Germany.
Physiological responses derived from audiovisual perception during assisted driving are associated with the regulation of the autonomic nervous system (ANS), especially in emergencies. However, the interaction of event-related brain activity and the ANS regulating peripheral physiological indicators (i.e.
View Article and Find Full Text PDFJ Neurol
January 2025
Parkinson's Disease Research Clinic, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia.
Impulse Control Disorders (ICDs) are increasingly recognized as a significant non-motor complication in Parkinson's disease (PD), impacting patients and their caregivers. ICDs in PD are primarily associated with dopaminergic treatments, particularly dopamine agonists, though not all patients develop these disorders, indicating a role for genetic and other clinical factors. Studies over the past few years suggest that the mesocorticolimbic reward system, a core neural substrate for impulsivity, is a key contributor to ICDs in PD.
View Article and Find Full Text PDFNeuroinformatics
January 2025
Department of Clinical Medicine, UiT the Arctic University of Norway, Tromsø, Norway.
Intracranial atherosclerotic stenosis (ICAS) and intracranial aneurysms are prevalent conditions in the cerebrovascular system. ICAS causes a narrowing of the arterial lumen, thereby restricting blood flow, while aneurysms involve the ballooning of blood vessels. Both conditions can lead to severe outcomes, such as stroke or vessel rupture, which can be fatal.
View Article and Find Full Text PDFEur Radiol Exp
January 2025
Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Background: Hemorrhagic transformation (HT) is a complication of reperfusion therapy following acute ischemic stroke (AIS). We aimed to develop and validate a model for predicting HT and its subtypes with poor prognosis-parenchymal hemorrhage (PH), including PH-1 (hematoma within infarcted tissue, occupying < 30%) and PH-2 (hematoma occupying ≥ 30% of the infarcted tissue)-in AIS patients following intravenous thrombolysis (IVT) based on noncontrast computed tomography (NCCT) and clinical data.
Methods: In this six-center retrospective study, clinical and imaging data from 445 consecutive IVT-treated AIS patients were collected (01/2018-06/2023).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!