Objective: The structure and composition of articular cartilage change during development and growth. These changes lead to alterations in the mechanical properties of cartilage. In the present study, biomechanical, biochemical and structural relationships of articular cartilage during growth and maturation of rabbits are investigated.

Design: Articular cartilage specimens from the tibial medial plateaus and femoral medial condyles of female New Zealand white rabbits were collected from seven age-groups; 0 days (n=29), 11 days (n=30), 4 weeks (n=30), 6 weeks (n=30), 3 months (n=24), 6 months (n=24) and 18 months (n=19). The samples underwent mechanical testing under creep indentation. From the mechanical response, instantaneous and equilibrium moduli were determined. Biochemical analyses of tissue collagen, hydroxylysylpyridinoline (HP) and pentosidine (PEN) cross-links in full thickness cartilage samples were conducted. Proteoglycans were investigated depth-wise from the tissue sections by measuring the optical density of Safranin-O-stained samples. Furthermore, depth-wise collagen architecture of articular cartilage was analyzed with polarized light microscopy. Finite element analyses of the samples from different age-groups were conducted to reveal tensile and compressive properties of the fibril network and the matrix of articular cartilage, respectively.

Results: Tissue thickness decreased from approximately 3 to approximately 0.5mm until the age of 3 months, while the instantaneous modulus increased with age prior to peak at 4-6 weeks. A lower equilibrium modulus was observed before 3-month-age, after which the equilibrium modulus continued to increase. Collagen fibril orientation angle and parallelism index were inversely related to the instantaneous modulus, tensile fibril modulus and tissue thickness. Collagen content and cross-linking were positively related to the equilibrium compressive properties of the tissue.

Conclusions: During maturation, significant modulation of tissue structure, composition and mechanical properties takes place. Importantly, the present study provides insight into the mechanical, chemical and structural interactions that lead to functional properties of mature articular cartilage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.joca.2009.07.002DOI Listing

Publication Analysis

Top Keywords

articular cartilage
28
cartilage
9
biomechanical biochemical
8
biochemical structural
8
structure composition
8
mechanical properties
8
n=30 weeks
8
weeks n=30
8
months n=24
8
n=24 months
8

Similar Publications

Association between meniscal extrusion and disease severity in knee osteoarthritis: a retrospective case-control study.

BMC Musculoskelet Disord

December 2024

Department of Orthopedics, The Second Affiliated Hospital of Air Force Military Medical University (Tangdu Hospital), 569 Xinsi Road, Baqiao District, Xi'an City, Shaanxi Province, 710000, China.

Objective: To explore the relationship between meniscus compression and the severity of knee osteoarthritis.

Materials And Methods: A retrospective case-control study included 95 patients with knee osteoarthritis (OA) admitted to our hospital from April 2021 to July 2023, who were grouped into slight protrusion of meniscus group (n = 48) and severe protrusion of meniscus group (n = 47) according to the degree of meniscal extrusion. Various parameters, including Kellgren/Lawrence classification, imaging findings, cartilage damage grading, physical function assessments, and correlation analyses, were used to evaluate the relationship between meniscal extrusion and disease progression.

View Article and Find Full Text PDF

Current understanding of articular cartilage lesions in femoroacetabular impingement syndrome.

J Orthop Surg Res

December 2024

Department of Joint and Sports Medicine, The First Affiliated Hospital of Dalian Medical University, No.193 Lianhe Road, Shahekou District, Dalian, 116021, China.

The concept of femoroacetabular impingement syndrome (FAIS) has received much attention over the past 20 years. Currently, it is believed that FAIS can lead to intra-articular pathologies such as labral tears and articular cartilage lesions, resulting in clinical symptoms and subsequent poor clinical outcomes. FAIS-related articular cartilage lesions are common but unique, and their natural course always leads to early osteoarthritis of the hip.

View Article and Find Full Text PDF

Harnessing Raman spectroscopy and multimodal imaging of cartilage for osteoarthritis diagnosis.

Sci Rep

December 2024

School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Life Sciences Building 85, University Road, Highfield, Southampton, SO17 1BJ, UK.

Osteoarthritis (OA) is a complex disease of cartilage characterised by joint pain, functional limitation, and reduced quality of life with affected joint movement leading to pain and limited mobility. Current methods to diagnose OA are predominantly limited to X-ray, MRI and invasive joint fluid analysis, all of which lack chemical or molecular specificity and are limited to detection of the disease at later stages. A rapid minimally invasive and non-destructive approach to disease diagnosis is a critical unmet need.

View Article and Find Full Text PDF

Preliminary study on the potential damage of cigarette smoke extract in 3D human chondrocyte culture.

In Vitro Cell Dev Biol Anim

December 2024

Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra (INRLGII), Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, 14389, Mexico City, Mexico.

Osteoarthritis (OA) is a chronic degenerative disease characterized by the progressive loss of articular cartilage. The role of cigarette smoke (CS) in OA is debated, with some studies suggesting a protective effect while others indicate it may pose a risk. Our preliminary findings suggest a link between smoking in young adults and severe knee OA, though the extent of this contribution is unclear.

View Article and Find Full Text PDF

Identification and validation of up-regulated TNFAIP6 in osteoarthritis with type 2 diabetes mellitus.

Sci Rep

December 2024

Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.

Lines of evidence have indicated that type 2 diabetes mellitus (T2DM) is an independent risk factor for osteoarthritis (OA) progression. However, the study focused on the relationship between T2DM and OA at the transcriptional level remains empty. We downloaded OA- and T2DM-related bulk RNA-sequencing and single-cell RNA sequencing data from the Gene Expression Omnibus (GEO) dataset.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!