Methylmercury (CH3Hg+) is a serious environmental toxicant. Exposure to this metal during pregnancy can cause serious neurological and developmental defects in a developing fetus. Surprisingly, little is known about the mechanisms by which mercuric ions are transported across the placenta. Although it has been shown that 2,3-dimercaptopropane-1-sulfonate (DMPS) and 2,3-dimercaptosuccinic acid (DMSA) are capable of extracting mercuric ions from various organs and cells, there is no evidence that they are able to extract mercury from placental or fetal tissues following maternal exposure to CH3Hg+. Therefore, the purpose of the current study was to evaluate the ability of DMPS and DMSA to extract mercuric ions from placental and fetal tissues following maternal exposure to CH3Hg+. Pregnant Wistar rats were exposed to CH3HgCl, containing [203Hg], on day 11 or day 17 of pregnancy and treated 24 h later with saline, DMPS or DMSA. Maternal organs, fetuses, and placentas were harvested 48 h after exposure to CH3HgCl. The disposition of mercuric ions in maternal organs and tissues was similar to that reported previously by our laboratory. The disposition of mercuric ions in placentas and fetuses appeared to be dependent upon the gestational age of the fetus. The fetal and placental burden of mercury increased as fetal age increased and was reduced by DMPS and DMSA, with DMPS being more effective. The disposition of mercury was examined in liver, total renal mass, and brain of fetuses harvested on gestational day 19. On a per gram tissue basis, the greatest amount of mercury was detected in the total renal mass of the fetus, followed by brain and liver. DMPS and DMSA reduced the burden of mercury in liver and brain while only DMPS was effective in the total renal mass. The results of the current study are the first to show that DMPS and DMSA are capable of extracting mercuric ions, not only from maternal tissues, but also from placental and fetal tissues following maternal exposure to CH3Hg+.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2739879 | PMC |
http://dx.doi.org/10.1016/j.placenta.2009.06.005 | DOI Listing |
Heliyon
February 2025
Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran.
Metals have been used for many centuries, but their nutritional and toxic effects have been investigated since the last century. The common toxic heavy metals (THM) include mercury, lead, chromium cadmium, and arsenic. As human exposure to THM increasingly causes systemic and organ complications, it seems required to review the recent advances of treatment of the toxic metals.
View Article and Find Full Text PDFMicrob Drug Resist
January 2025
Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
Carbapenenemase producers, particularly the metallo-β-lactamase (MBL) types in , have emerged as an urgent threat in health care settings. MBLs require zinc at their catalytic site and can be inhibited by dimercaptosuccinic acid (DMSA), a metal chelator known for the treatment of lead and mercury intoxication. Isogenic strains of wild-type and OprD-deleted PA14, were constructed, producing the MBLs VIM-2, NDM-1, SPM-1, IMP-1, and AIM-1, or the non-MBL carbapenemases, GES-5 and KPC-2.
View Article and Find Full Text PDFArch Toxicol
January 2025
Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia.
Heavy metals are naturally occurring components of the Earth's crust and persistent environmental pollutants. Human exposure to heavy metals occurs via various pathways, including inhalation of air/dust particles, ingesting contaminated water or soil, or through the food chain. Their bioaccumulation may lead to diverse toxic effects affecting different body tissues and organ systems.
View Article and Find Full Text PDFArch Soc Esp Oftalmol (Engl Ed)
June 2021
Servicio de Cirugía Ortopédica y Traumatología, Hospital Clínic, Barcelona, Spain.
The case of a 68-year-old patient with visual loss secondary to prosthetic cobaltism is reported. The degeneration of the metallic hip prosthesis can produce a systemic absorption of cobalt with cardiac, neurological, endocrine, auditory, and visual manifestations. The diagnostic suspicion is confirmed by serum cobalt measurements.
View Article and Find Full Text PDFCurr Med Chem
November 2021
Roskilde University, 4000 Roskilde, Denmark.
Although most of the harmful radionuclides are of anthropogenic origin and released from military or industrial processes, radioactive substances, such as uranium, also occur naturally in the environment. Low standards of care at nuclear facilities can lead to the contamination of employees with radionuclides due to inhalation of gases or dust or contamination of skin or wounds. Various sources for radionuclide exposure may present concerns for radioactive polonium or plutonium exposure, for instance, terrorist actions on the infrastructure, such as on drinking water basins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!