A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electrophysiological properties of ventral cochlear nucleus neurons of the dog. | LitMetric

Electrophysiological properties of ventral cochlear nucleus neurons of the dog.

Hear Res

Department of Biophysics, Faculty of Medicine, Firat University, 23119 Elazig, Turkey.

Published: October 2009

Neurons in the cochlear nucleus (CN) have distinct anatomical and biophysical specializations and extract various facets of auditory information which are transmitted to the higher auditory centres. The aim of the present study was to determine if the principal neurons (stellate, bushy and octopus cells) of the ventral cochlear nucleus (VCN) in 2-week-old dog brain slices share common electrophysiological properties with the principal neurons of mouse VCN. Stellate cells (n=21, of which three were anatomically identified), fired large, regular trains of action potentials in response to depolarizing current pulses. Input resistance and membrane time constant were 176+/-35.9 MOmega (n=21) and 8.8+/-1.4 ms (n=21), respectively. Bushy cells, (n=6, of which three were anatomically identified) responded with a single action potential at the onset of depolarizing current steps and showed large hyperpolarizing voltage changes that sag back toward rest to hyperpolarizing current pulses. Input resistance and membrane time constant were 120.4+/-56.1 MOmega (n=5) and 7.6+/-2.3 ms (n=5), respectively. Octopus cells (n=17, of which seven were anatomically identified) fired a single action potential at the start of a depolarizing current step and exhibited a pronounced depolarizing sag of the membrane potential towards the resting value to hyperpolarizing current steps. Input resistance and membrane time constant were 17.58+/-1.3 MOmega (n=15) and 1.34+/-0.13 ms (n=15), respectively. While stellate cells did not have a threshold rate of depolarization (dV/dt(thresh)), bushy and octopus had a dV/dt(thresh) of 5.06+/-1.04 mV/ms (n=4) and 10.6+/-2.0 mV/ms (n=6), respectively. In octopus cells, the single action potential was abolished by tetrodotoxin (TTX). An alpha-dendrotoxin (alpha-DTX)-sensitive, low-voltage-activated potassium conductance (g(KL)) together with a ZD7288-sensitive, mixed-cation conductance (g(h)) were responsible for the low input resistance, and as a consequence for the brief time constant of the octopus cells. We conclude that the principal neurons of the dog VCN are, as in mouse and cat, distinguishable on the basis of whole-cell patch-clamp recordings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.heares.2009.07.004DOI Listing

Publication Analysis

Top Keywords

octopus cells
16
input resistance
16
time constant
16
cochlear nucleus
12
principal neurons
12
anatomically identified
12
depolarizing current
12
resistance membrane
12
membrane time
12
single action
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!