It is generally accepted that hypoxia and recovery from oxygen deprivation contribute to the breakdown and ulceration of human skin. The effects of these stresses on proliferation, differentiation and expression of cell-cell adhesion molecules were investigated for the first time in an organotypic model of human skin. Fully stratified tissues were exposed to a time course of oxygen deprivation and subsequent reoxygenation. Regional changes in keratinocyte morphology, glycogen stores and cellular junctions were observed, with more differentiated layers of the epidermis exhibiting the first evidence of oxygen deprivation. Cellular swelling within the granular layer was concurrent with aquaporin-3 depletion. The keratinocyte adherens junction proteins E-cadherin and beta-catenin were dramatically decreased in a regio-specific manner throughout the epidermis following oxygen deprivation. In contrast, P-cadherin and the desmosomal proteins desmoplakin and desmoglein-1 were refractory to oxygen deprivation. Relative to normoxic controls, hypoxic tissues exhibited increased mRNA levels of the transcriptional repressor Slug; however, mRNA levels of the related transcriptional factor Snail were unaffected. All cellular and molecular changes were reversible upon reoxygenation. These results show that oxygen deprivation and reoxygenation exert differential effects on epidermal adhesion proteins and suggest a novel role for cadherins, beta-catenin, and Slug in hypoxia-induced junctional changes occurring in stratified squamous epithelium.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2743024PMC
http://dx.doi.org/10.1111/j.1524-475X.2009.00515.xDOI Listing

Publication Analysis

Top Keywords

oxygen deprivation
28
human skin
12
model human
8
adherens junction
8
junction proteins
8
mrna levels
8
levels transcriptional
8
oxygen
7
deprivation
6
deprivation inhibits
4

Similar Publications

DNA2, a multifunctional enzyme with structure-specific nuclease, 5 -to-3 helicase, and DNA-dependent ATPase activities, plays a pivotal role in the cellular response to DNA damage. However, its involvement in cerebral ischemia/reperfusion (I/R) injury remains to be elucidated. This study investigated the involvement of DNA2 in cerebral I/R injury using conditional knockout (cKO) mice ( -Cre) subjected to middle cerebral artery occlusion (MCAO), an established model of cerebral I/R.

View Article and Find Full Text PDF

To investigate the neuroprotective mechanism of mild hypothermia (MH) in ameliorating cerebral ischemia reperfusion (IR) injury. The Pulsinelli's four-vessel ligation method was utilized to establish a rat model of global cerebral IR injury. To investigate the role of S100A8 in MH treatment of cerebral IR injury, hippocampus-specific S100A8 loss or gain of function was achieved using an adeno-associated virus system.

View Article and Find Full Text PDF

Introduction Intraventricular hemorrhage is a severe condition caused by bleeding within the brain ventricles. It is often due to trauma, tumors, vascular malformation, aneurysm, oxygen deprivation, or idiopathic. A common complication associated with intraventricular hemorrhage is hydrocephalus, which is the accumulation of cerebrospinal fluid in the ventricles.

View Article and Find Full Text PDF

Overexpressed CD73 attenuates GSDMD-mediated astrocyte pyroptosis induced by cerebral ischemia-reperfusion injury through the A2B/NF-κB pathway.

Exp Neurol

January 2025

Department of Neurosurgery, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214000, China; Wuxi Medical Center of Nanjing Medical University, Wuxi 214000, China. Electronic address:

Ischemic stroke, resulting from the blockage or narrowing of cerebral vessels, causes brain tissue damage due to ischemia and hypoxia. Although reperfusion therapy is essential to restore blood flow, it may also result in reperfusion injury, causing secondary damage through mechanisms like oxidative stress, inflammation, and excitotoxicity. These effects significantly impact astrocytes, neurons, and endothelial cells, aggravating brain injury and disrupting the blood-brain barrier.

View Article and Find Full Text PDF

Naotaifang formula regulates Drp1-induced remodeling of mitochondrial dynamics following cerebral ischemia-reperfusion injury.

Free Radic Biol Med

January 2025

Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China; Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei, China. Electronic address:

Cerebral ischemia-reperfusion injury (CIRI) has emerged as a hindrance for rehabilitation of ischemic stroke patients. Naotaifang (NTF) exhibits beneficial efficacy in alleviating inflammation and ferroptosis in vitro during CIRI. While the potential role of NTF in regulating mitochondrial dynamics in CIRI are not elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!