AI Article Synopsis

  • Dendrosomes from the substantia nigra can absorb and release dopamine in a way that depends on calcium levels, but their uptake rate is much lower than in caudate putamen synaptosomes.
  • The release pattern of dopamine in response to potassium is different in dendrosomes compared to synaptosomes, and acetylcholine enhances dopamine release from dendrosomes in a concentration-dependent manner.
  • Acetylcholine also decreases the release of its own neurotransmitter from substantia nigra nerve endings, with both effects being mediated by different muscarinic receptor subtypes.

Article Abstract

Dendrosomes prepared from substantia nigra are able to take up and release [3H]dopamine in a CA(2+)-dependent manner. The Vmax values of [3H]dopamine uptake in substantia nigra dendrosomes was about 5 times lower than that in caudate putamen synaptosomes. The pattern of the K(+)-dependency of the [3H]dopamine release in substantia nigra dendrosomes was significantly different from that found in caudate putamen synaptosomes. The release of [3H]dopamine evoked by 15 mmol/l KCl from superfused dendrosomes was increased in a concentration-dependent manner by acetylcholine. The maximal potentiation produced by acetylcholine was about 40%. The potentiation of [3H]dopamine release by 10 mumol/l acetylcholine was insensitive to mecamylamine but antagonized by atropine and by pirenzepine. The effects of acetylcholine on the release of [3H]acetylcholine from substantia nigra nerve endings was also studied. Exogenous acetylcholine added to the superfusion medium decreased in a concentration-dependent manner the release of acetylcholine. This effect was not antagonized by mecamylamine or pirenzepine but fully antagonized by atropine. The data suggest the existence, in the substantia nigra of the rat, of two distinct muscarinic receptor subtypes regulating respectively dopamine release from dopamine dendrites and acetylcholine release from cholinergic nerve terminals.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00183000DOI Listing

Publication Analysis

Top Keywords

substantia nigra
24
[3h]dopamine release
12
nigra dendrosomes
12
release
9
release [3h]dopamine
8
caudate putamen
8
putamen synaptosomes
8
concentration-dependent manner
8
antagonized atropine
8
acetylcholine release
8

Similar Publications

The global prevalence of Parkinson's Disease (PD) is on the rise, driven by an ageing population and ongoing environmental conditions. To gain a better understanding of PD pathogenesis, it is essential to consider its relationship with the ageing process, as ageing stands out as the most significant risk factor for this neurodegenerative condition. PD risk factors encompass genetic predisposition, exposure to environmental toxins, and lifestyle influences, collectively increasing the chance of PD development.

View Article and Find Full Text PDF

The motor symptoms of Parkinson's Disease are attributed to the degeneration of dopamine neurons in the substantia nigra pars compacta (SNc). Previous work in the MCI-Park mouse model has suggested that the loss of somatodendritic dopamine transmission predicts the development of motor deficits. In the current study, brain slices from MCI-Park mice were used to investigate dopamine signaling in the SNc prior to and through the onset of movement deficits.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a prevalent neurodegenerative disease caused by the death of dopaminergic neurons within the substantia nigra pars compacta (SNpc) region of the midbrain. Recent genomic and single cell sequencing data identified oligodendrocytes and oligodendrocyte precursor cells (OPCs) to confer genetic risk in PD, but their biological role is unknown. Although SNpc dopaminergic neurons are scarcely or thinly myelinated, there is a gap in the knowledge concerning the physiological interactions between dopaminergic neurons and oligodendroglia.

View Article and Find Full Text PDF

Evolving Landscape of Parkinson's Disease Research: Challenges and Perspectives.

ACS Omega

January 2025

CAS, a division of the American Chemical Society, Columbus, Ohio 43210, United States.

Parkinson's disease (PD) is a progressive neurodegenerative disorder that primarily affects movement. It occurs due to a gradual deficit of dopamine-producing brain cells, particularly in the substantia nigra. The precise etiology of PD is not fully understood, but it likely involves a combination of genetic and environmental factors.

View Article and Find Full Text PDF

Background: The incidence of Parkinson's disease (PD) increases with age. Previous pharmacological studies have shown the potential of Huatan Jieyu Granules (HGs) for the treatment of PD, but the exact mechanisms remain unclear. This study aimed to explore the effects of herbal treatment on PD using mouse models and single-cell sequencing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!