Supplemental control of lepidopterous pests on Bt transgenic sweet corn with biologically-based spray treatments.

J Insect Sci

USDA, Agricultural Research Service, Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, MD 20705, USA.

Published: August 2009

Biologically-based spray treatments, including nucleopolyhedroviruses, neem, and spinosad, were evaluated as supplemental controls for the fall armyworm, Spodoptera frugiperda (J. E. Smith), and corn earworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), on transgenic sweet corn, Zea mays (L.) (Poales: Poaceae), expressing a Cry1Ab toxin from Bacillus thuringiensis Berliner (Bacillales: Bacillaceae) (Bt). Overall, transgenic corn supported lower densities of both pests than did nontransgenic corn. Control of the fall armyworm was improved in both whorl-stage and tassel-stage corn by the use of either a nucleopolyhedrovirus or neem, but the greatest improvement was seen with spinosad. Only spinosad consistently reduced damage to ears, which was caused by both pest species. In general, efficacy of the spray materials did not differ greatly between transgenic and nontransgenic corn.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3011879PMC
http://dx.doi.org/10.1673/031.009.0801DOI Listing

Publication Analysis

Top Keywords

transgenic sweet
8
sweet corn
8
biologically-based spray
8
spray treatments
8
fall armyworm
8
nontransgenic corn
8
corn
7
supplemental control
4
control lepidopterous
4
lepidopterous pests
4

Similar Publications

A novel geminivirus-derived 3' flanking sequence of terminator mediates the gene expression enhancement.

Plant Biotechnol J

December 2024

Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China.

Exploring the new elements to re-design the expression cassette is crucial in synthetic biology. Viruses are one of the most important sources for exploring gene expression elements. In this study, we found that the DNA sequence of the SBG51 deltasatellite from the Sweet potato leaf curl virus (SPLCV) greatly enhanced the gene expression when flanked downstream of the terminator.

View Article and Find Full Text PDF

Identification of WRKY transcription factors in Ipomoea pes-caprae and functional role of IpWRKY16 in sweet potato salt stress response.

BMC Plant Biol

December 2024

The Key Laboratory of Biotechnology for Medicinal and Edible Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.

Background: WRKY transcription factors are plant-specific and play essential roles in growth, development, and stress responses, including reactions to salt, drought, and cold. Despite their significance, the WRKY genes in the wild sweet potato ancestor, Ipomoea pes-caprae, remain unexplored.

Results: In this study, 65 WRKY genes were identified in the I.

View Article and Find Full Text PDF

Genetic and physiological characteristics of edited citrus and their impact on HLB tolerance.

Front Genome Ed

December 2024

Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States.

Article Synopsis
  • Huanglongbing (HLB) disease, triggered by the bacterium Liberibacter asiaticus, poses a serious threat to citrus production with no existing cure, making the development of resistant cultivars essential.
  • Researchers focused on the NONEXPRESSOR OF PATHOGENESIS-RELATED GENES (NPR) family, specifically modifying NPR1 and NPR3 genes in sweet orange trees to improve HLB resistance.
  • The genome-edited sweet orange varieties showed enhanced vigor compared to wild-type trees under greenhouse conditions, suggesting that targeted gene editing can help in developing HLB-tolerant citrus plants, although further field tests are required to confirm these results.
View Article and Find Full Text PDF

Genome-wide identification of the WD40 protein family and functional characterization of AaTTG1 in Artemisia annua.

Int J Biol Macromol

December 2024

Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Second Affiliated Hospital of Navy Medical University, Shanghai 200003, China. Electronic address:

Sweet wormwood (Artemisia annua), an annual herb belonging to the Compositae family, is the main source of the potent anti-malarial drug artemisinin, which is mainly produced in glandular trichomes of A. annua leaves. The WD40 protein family is one of the largest protein families in eukaryotes and plays crucial roles in regulating plant growth and development, stress responses, and secondary metabolite biosynthesis.

View Article and Find Full Text PDF

Refining polyploid breeding in sweet potato through allele dosage enhancement.

Nat Plants

December 2024

Crops Research Institute, Guangdong Academy of Agricultural Sciences and Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, China.

Article Synopsis
  • The study focuses on how allele dosage affects variations in traits of hexaploid sweet potato, based on deep sequencing of 294 accessions, creating a genome-wide variation map.* -
  • Genome-wide association studies revealed quantitative trait loci that link allele dosage to 23 agronomic traits, highlighting how sweet potato breeding has selectively increased these alleles to improve crop performance.* -
  • The research uncovers the evolutionary trend in the Mesoamerican gene pool towards higher dosage of beneficial alleles, with evidence from transgenic validation and identification of sequence variations influencing traits like tuber weight and flesh color.*
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!