Vascular insulin-like growth factor-I resistance and diet-induced obesity.

Endocrinology

Division of Cardiovascular and Diabetes Research, Leeds Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds LS2 9JT, United Kingdom.

Published: October 2009

Obesity and type 2 diabetes mellitus are characterized by insulin resistance, reduced bioavailability of the antiatherosclerotic signaling molecule nitric oxide (NO), and accelerated atherosclerosis. IGF-I, the principal growth-stimulating peptide, which shares many of the effects of insulin, may, like insulin, also be involved in metabolic and vascular homeostasis. We examined the effects of IGF-I on NO bioavailability and the effect of obesity/type 2 diabetes mellitus on IGF-I actions at a whole-body level and in the vasculature. In aortic rings IGF-I blunted phenylephrine-mediated vasoconstriction and relaxed rings preconstricted with phenylephrine, an effect blocked by N(G)-monomethyl L-arginine. IGF-I increased NO synthase activity to an extent similar to that seen with insulin and in-vivo IGF-I led to serine phosphorylation of endothelial NO synthase (eNOS). Mice rendered obese using a high-fat diet were less sensitive to the glucose-lowering effects of insulin and IGF-I. IGF-I increased aortic phospho-eNOS levels in lean mice, an effect that was blunted in obese mice. eNOS activity in aortae of lean mice increased 1.6-fold in response to IGF-I compared with obese mice. IGF-I-mediated vasorelaxation was blunted in obese mice. These data demonstrate that IGF-I increases eNOS phosphorylation in-vivo, increases eNOS activity, and leads to NO-dependent relaxation of conduit vessels. Obesity is associated with resistance to IGF-I at a whole-body level and in the endothelium. Vascular IGF-I resistance may represent a novel therapeutic target to prevent or slow the accelerated vasculopathy seen in humans with obesity or type 2 diabetes mellitus.

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2008-1641DOI Listing

Publication Analysis

Top Keywords

diabetes mellitus
12
igf-i
12
obese mice
12
obesity type
8
type diabetes
8
effects insulin
8
whole-body level
8
igf-i increased
8
lean mice
8
blunted obese
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!