Objective: The purpose of this study was to describe the high-resolution computed tomography (HRCT) features of pulmonary paracoccidioidomycosis and to correlate them with pathologic findings.
Methods: The study included 23 adult patients with pulmonary paracoccidioidomycosis. All patients had undergone HRCT, and the images were retrospectively analyzed by two chest radiologists, who reached decisions by consensus. An experienced lung pathologist reviewed all pathological specimens. The HRCT findings were correlated with histopathologic data.
Results: The predominant HRCT findings included areas of ground-glass opacities, nodules, interlobular septal thickening, airspace consolidation, cavitation, and fibrosis. The main pathological features consisted of alveolar and interlobular septal inflammatory infiltration, granulomas, alveolar exudate, cavitation secondary to necrosis, and fibrosis.
Conclusion: Paracoccidioidomycosis can present different tomography patterns, which can involve both the interstitium and the airspace. These abnormalities can be pathologically correlated with inflammatory infiltration, granulomatous reaction, and fibrosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejrad.2009.06.017 | DOI Listing |
Int J Cardiol Heart Vasc
February 2025
Dept. of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands.
Background: Areas of conduction disorders play an important role in both initiation and perpetuation of AF and can be recognized by specific changes in unipolar potential morphology. For example, EGM fractionation may be caused by asynchronous activation of adjacent cardiomyocytes because of structural barriers such as fibrotic strands. However, it is unknown whether there are sex differences in unipolar potential morphology.
View Article and Find Full Text PDFJ Bone Miner Res
January 2025
Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada.
Timelapse imaging using high-resolution peripheral quantitative computed tomography (HR-pQCT) has emerged as a noninvasive method to quantify bone (re)modelling. However, there is no consensus on how to perform the procedure. As part of the ASTEROID phase-2b multicenter trial, we used 29 same-day repeated scans from adults with osteogenesis imperfecta (OI) to identify a method that minimized measurement error.
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
Computed tomography (CT) imaging has emerge as an effective medical diagnostic technique due to its rapid and 3D imaging capabilities, often employing indirect imaging methods through scintillator materials. Arraying scintillators that can confine light scattering to enable high-resolution CT imaging remains an area of ongoing exploration for emerging perovskite scintillators. Here an anti-scattering cesium lead bromide (CsPbBr) scintillator array embedded within a polyurethane acrylate matrix for CT imaging using a cost-effective solution-processed method is reported.
View Article and Find Full Text PDFActa Radiol
January 2025
Department of Radiology, Changi General Hospital, Singapore, Republic of Singapore.
Background: Computed tomography (CT) is the gold standard imaging modality for the assessment of 3D bony morphology but incurs the cost of ionizing radiation exposure. High-resolution 3D magnetic resonance imaging (MRI) with CT-like bone contrast (CLBC) may provide an alternative to CT in allowing complete evaluation of both bony and soft tissue structures with a single MRI examination.
Purpose: To review the technical aspects of an optimized stack-of-stars 3D gradient recalled echo pulse sequence method (3D-Bone) in generating 3D MR images with CLBC, and to present a pictorial review of the utility of 3D-Bone in the clinical assessment of common musculoskeletal conditions.
Pulm Circ
January 2025
Department of Imaging and Pathology, Biomedical MRI KU Leuven Leuven Belgium.
The pulmonary vasculature plays a pivotal role in the development and progress of chronic lung diseases. Due to limitations of conventional two-dimensional histological methods, the complexity and the detailed anatomy of the lung blood circulation might be overlooked. In this study, we demonstrate the practical use of optical serial block face imaging (SBFI), ex vivo microcomputed tomography (micro-CT), and nondestructive optical tomography for visualization and quantification of the pulmonary circulation's 3D architecture from macro- to micro-structural levels in murine lung samples.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!