An enantioselective Brønsted acid-catalyzed N-acyliminium cyclization cascade of tryptamines with enol lactones to form architecturally complex heterocycles in high enantiomeric excess has been developed. The reaction is technically simple to perform as well as atom-efficient and may be coupled to a gold(I)-catalyzed cycloisomerization of alkynoic acids whereby the key enol lactone reaction partner is generated in situ. Employing up to 10 mol % bulky chiral phosphoric acid catalysts in boiling toluene allowed the product materials to be generated in good overall yields (63-99%) and high enantioselectivities (72-99% ee). With doubly substituted enol lactones, high diastereo- and enantioselectivities were obtained, thus providing a new example of a dynamic kinetic asymmetric cyclization reaction.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja9024885DOI Listing

Publication Analysis

Top Keywords

enantioselective brønsted
8
brønsted acid-catalyzed
8
acid-catalyzed n-acyliminium
8
n-acyliminium cyclization
8
enol lactones
8
cyclization cascades
4
cascades enantioselective
4
cyclization cascade
4
cascade tryptamines
4
tryptamines enol
4

Similar Publications

Chain Shuttling Enantioselective Polymerization: An Effective Strategy for Synthesizing Stereoblock Polythioethers.

J Am Chem Soc

January 2025

State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.

Herein, we propose to synthesize stereoblock polythioethers through the chain shuttling enantioselective ring-opening polymerization (ROP) of thiiranes. The use of diastereoisomeric dinuclear Cr complexes with optimized steric hindrance allowed the production of polythioethers with both a head-to-tail content and isotacticity of >99%. In particular, the introduction of dithiols enabled the synthesis of stereoblock polythioethers via a chain shuttling process, thus producing sulfhydryl-telechelic polythioethers with tunable thermal properties.

View Article and Find Full Text PDF

Enantioselective construction of silicon-stereogenic vinylsilanes from simple alkenes.

Nat Commun

January 2025

State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University 94 Weijin Road, Tianjin, China.

The diverse utility of acyclic vinylsilanes has driven the interest in the synthesis of enantioenriched vinylsilanes bearing a Si-stereogenic center. However, the predominant approaches for catalytic asymmetric generation of Si-stereogenic vinylsilanes have mainly relied on transition metal-catalyzed reactions of alkynes with different silicon sources. Here we successfully realize the enantioselective synthesis of linear silicon-stereogenic vinylsilanes with good yields and enantiomeric ratios from simple alkenes under rhodium catalysis.

View Article and Find Full Text PDF

The endoperoxide scaffold is found in numerous natural products and synthetic substances of pharmaceutical interest. The main challenge to their synthetic access remains the preparation of chiral compounds due to the weakness of the peroxide bond, which limits the scope of available or applicable methods. Here, we demonstrate how peroxycarbenium species can be trapped by silylated nucleophiles with high enantioselectivities and diastereoselectivities when applicable, using a chiral imidophosphorimidate (IDPi) as a catalyst.

View Article and Find Full Text PDF

A C-H Arylation-Based Enantioselective Synthesis of Planar Chiral Cyclophanes.

Angew Chem Int Ed Engl

January 2025

University of Basel, Department of Chemistry, St. Johanns-Ring 19, 4056, Basel, SWITZERLAND.

Despite the growing importance of planar chiral macrocyclophanes owing to their unique properties in different areas of chemistry, methods that are effective in controlling their planar chirality are restricted to certain molecular scaffolds. Herein, we report the first Pd(0)-catalyzed enantioselective intermolecular C-H arylation that induces planar chirality by installing bulky aryl groups through dynamic kinetic resolution (DKR). A computer-assisted approach allowed a fine-tuning of the structure of the employed chiral bifunctional phosphine-carboxylate ligands to achieve high enantioselectivities.

View Article and Find Full Text PDF

Taming highly enolizable aldehydes for catalytic asymmetric C-C coupling with nucleophiles remains an elusive challenge compared to widely explored simple alkyl or aryl aldehydes. Herein, we use ThDP-dependent enzymes to realize the direct C-C coupling of highly enolizable 2-phosphonate aldehydes with in situ-generated dynamically reversible nucleophiles (acyl anions). Unlike NHC-mediated reactions that yield complex mixtures of multiple adducts, our enzymatic process selectively produces biologically active β-hydroxy phosphonates with high yields (up to 95%) and excellent enantioselectivities (up to 99% ee).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!