Convective assembly and dry transfer of nanoparticles using hydrophobic/hydrophilic monolayer templates.

Langmuir

NSF Nanoscale Science and Engineering Center for High-Rate Nanomanufacturing, Northeastern University, Boston, Massachusetts 02115, USA.

Published: October 2009

A convective directed-assembly process on a flat substrate that does not require motion and is followed by a dry-transfer process of nanoparticles is presented. The convective assembly process was achieved using Au nanoparticles on hydrophobic/hydrophilic-surface-patterned Si substrates as functions of temperature, gap height, and particle size. An investigation of the particle assembly mechanism showed that the effects of temperature, gap height, and particle size were responsible for controlling the evaporation time, the evaporation length, and the assembly speed, respectively. To ensure conformal contact during the dry-transfer process, chemically patterned hybrid templates with elastic and flexible properties were fabricated and used. The hybrid templates provided conformal contact with a target silicon substrate coated with MPTMS (3-mercaptopropyltrimethoxysilane) and successfully transferred Au particles to the target substrates.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la901496sDOI Listing

Publication Analysis

Top Keywords

convective assembly
8
dry-transfer process
8
temperature gap
8
gap height
8
height particle
8
particle size
8
conformal contact
8
hybrid templates
8
assembly dry
4
dry transfer
4

Similar Publications

Cooperative Multiscale-Assembly for Directional and Hierarchical Growth of Highly Oriented Porous Organic Cage Single-Crystal Microtubes and Arrays.

Angew Chem Int Ed Engl

December 2024

MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China.

The directional assembly of porous organic molecules into long-range ordered architectures, featuring controlled hierarchical porosity and oriented pore channels with defined spatial arrangements, is a fundamental challenge in chemistry and materials science. Herein, using porous organic cages as starting units, we present a cooperative multiscale-assembly strategy enabling the simultaneous alignment of pore channels and directional hierarchical growth in a single step. At the microscopic level, we employed double solvents to manipulate the intermolecular packing of microporous tetrahedral [4+6] imine cages (CC1 and CC3), resulting in pore channel orientation.

View Article and Find Full Text PDF
Article Synopsis
  • Bottom-up nano- to micro-fabrication is essential for advancing electronics and optics, but traditional methods struggle with balancing performance and cost.
  • The study presents a new mixed-metal array fabrication technique that uses guided self-assembly of organometallic compounds to create high-quality metal wire arrays through natural processes like capillary action.
  • This innovative approach allows for the creation of hierarchical and complex geometries, resulting in high-performance materials suitable for opto-electronics applications like diodes and gates.
View Article and Find Full Text PDF

Model predictive control of non-interacting active Brownian particles.

Soft Matter

November 2024

Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.

Active matter systems are strongly driven to assume non-equilibrium distributions owing to their self-propulsion, , flocking and clustering. Controlling the active matter systems' spatiotemporal distributions offers exciting applications such as directed assembly, programmable materials, and microfluidic actuation. However, these applications involve environments with coupled dynamics and complex tasks, making intuitive control strategies insufficient.

View Article and Find Full Text PDF
Article Synopsis
  • Optofluidics combines microfluidics and photonics, presenting exciting opportunities for gas sensing technologies.
  • This study explores the creation of monolayer structures on a silicon nitride substrate, achieving a surface coverage of 59% through a microfluidic process.
  • The research highlights how linking these monolayers with a photonic integrated chip can enhance gas detection capabilities.
View Article and Find Full Text PDF

Thermo-optical tweezers based on photothermal waveguides.

Microsyst Nanoeng

September 2024

Photonics Research Center, School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin, 541004, China.

Field-controlled micromanipulation represents a pivotal technique for handling microparticles, yet conventional methods often risk physical damage to targets. Here, we discovered a completely new mechanism for true noncontact manipulation through photothermal effects, called thermal-optical tweezers. We employ a laser self-assembly photothermal waveguide (PTW) for dynamic microparticle manipulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!