Previously, we investigated the antimicrobial properties of pleurocidin (Ple) enantiomers. Our studies showed that the L-enantiomer exhibited about a 2-16 fold more potent activity against bacterial strains as compared to that of the D-enantiomer. However, fungal strains were about two-fold more susceptible to the D-enantiomer than to the L-enantiomer. In this study, confocal laser scanning microscopy indicates that the Ple enantiomers internalize into the cell surface. The present results also suggest that they could be characterized by a membrane-active mechanism. To further elucidate their selective membranolytic activities, we conducted a fluorescence analysis. A study with 1,6-diphenyl-1,3,5-hexatriene, a hydrophobic molecule, showed that the L-and the D-enantiomer exert more potent antibacterial or antifungal activity than their opposite enantiomer, respectively. Furthermore, we synthesized liposomes by using representative phospholipids consisting of bacterial or fungal membranes. Our results show that the L-enantiomer causes significant dye leakage from negatively charged liposomes (PG/CL; 58:42, PC/PG; 1:1, w/w) which mimic bacterial membranes such as Staphylococcus aureus. Conversely, the D-enantiomer has more potent leakage effects against fungal liposomes (PC/PE/PI/ergosterol; 5:4:1:2, w/w/w/w, PC/ergosterol; 10:1, w/w). In summary, these results suggest that the selective antimicrobial effects of the Ple enantiomers against bacterial and fungal cells may be due to the different lipid compositions of prokaryotes and eukaryotes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/psc.1157DOI Listing

Publication Analysis

Top Keywords

ple enantiomers
12
antimicrobial effects
8
bacterial fungal
8
cell selectivity-membrane
4
selectivity-membrane phospholipids
4
phospholipids relationship
4
relationship antimicrobial
4
effects pleurocidin
4
pleurocidin enantiomeric
4
enantiomeric peptides
4

Similar Publications

Element- and enantiomer-selective visualization of molecular motion in real-time.

Nat Commun

January 2023

Elettra Sincrotrone Trieste S.C.p.A., Strada Statale 14 - km 163, 5 in AREA Science Park, 34149, Basovizza, Trieste, Italy.

Ultrafast optical-domain spectroscopies allow to monitor in real time the motion of nuclei in molecules. Achieving element-selectivity had to await the advent of time resolved X-ray spectroscopy, which is now commonly carried at X-ray free electron lasers. However, detecting light element that are commonly encountered in organic molecules, remained elusive due to the need to work under vacuum.

View Article and Find Full Text PDF

Chemoenzymatic resolution of -malathion.

Tetrahedron Asymmetry

April 2014

ATERIS Technologies, 901 N Orange Street, Missoula MT 59802, USA.

Malathion, diethyl 2-[(dimethoxyphosphorothioyl)sulfanyl]butanedioate, is an organophosphate used to control insect pests. Malathion contains a diethyl succinate moiety that is a known functional group susceptible to desymmetrizing enzymes such as esterases that selectively react with a single enantiomer. Purified -malathion was subjected to hydrolysis at the diethyl succinate moiety of malathion under various conditions using wild type pig liver esterase to form ()-malathion (12 % ee) and ~ 3:2 mixture of α- and β-monoacids of ()-malathion.

View Article and Find Full Text PDF

Prochiral malonic diesters containing a quaternary carbon center have been successfully transformed into a diverse set of (t)Boc-Fmoc-α(2,2)-methyllysine-OH analogues through chiral malonic half-ester intermediates obtained via enzymatic (Pig Liver Esterase, PLE) hydrolysis. The variety of chiral half-ester intermediates, which vary from 1 to 6 methylene units in the side chain, are achieved in moderate to high optical purity and in good yields. The PLE hydrolysis of malonic diesters with various side chain lengths appears to obey the Jones's PLE model according to the stereochemical configurations of the resulting chiral half-esters.

View Article and Find Full Text PDF

A new series of synthetic flavones, thioflavones, and flavanones has been synthesized and evaluated as potential inhibitors of monoamine oxidase isoforms (MAO-A and -B). The most active series is the flavanone one with higher selective inhibitory activity against MAO-B. Some of these flavanones (mainly the most effective) have been separated and tested as single enantiomers.

View Article and Find Full Text PDF

Preparation and absolute configuration of (1R,4R)-(+)-3-oxo-, (1S,4S)-(-)-3-oxo- and (1R,3S,4R)-(+)-3-acetyloxy-5-oxo-1 ,8-cineole.

Nat Prod Commun

November 2009

lNQUINOA-CONICET and Instituto de Química Orgánica, Facultad de Bioquimica Quimica y Farmacia, Universidad Nacional de Tucuman, Ayacucho 471, S. M de Tucumin, T4000INI, Argentina.

Enantiomerically pure (1S,4S)-(-)-3-oxo-1,8-cineole (-)-2 and (1R,4R)-(+)-3-oxo-1,8-cineole (+)-2 were prepared for the first time and their absolute configurations assigned by vibrational circular dichroism (VCD) measurements. Thus, treatment of cineole 1 with chromyl acetate gave rac-2 which after sodium borohydride reduction and acetylation provided racemic 3-endo-acetyloxy-1,8-cineole, rac-4. Enantioselective hydrolysis using porcine liver esterase (PLE) gave a mixture of 3-endo-hydroxy-1,8-cineole (-)-3 and 3-endo-acetyloxy-1,8-cineole (+)-4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!