Sorting directionally oriented microstructures using railed microfluidics.

Lab Chip

School of Electrical Engineering and Computer Science, Seoul National University, San 56-1, Sillim-dong, Gwanak-gu, Seoul, 151-744, Korea.

Published: August 2009

We demonstrate the microfluidic sorting of directionally oriented (anisotropic) microstructures by their orientational state in solution using the concept of railed microfluidics. After being injected into a microfluidic channel, the microstructures rotate and flip in various directions. In order to sort microstructures in an organized way, we designed the microstructures and the microchannel to allow for orientation-based control of microstructure movement. In order to sort microstructures based on their rotation, we used a wedge shaped fin on the microstructures and a Y-shaped railed microfluidic channel. For sorting flipped particles, we use a double-railed microfluidic channel that has grooves on both its top and bottom surfaces. By integrating the two sorting methods we demonstrated high throughput, autonomous sorting into four different orientational states: unrotated-unflipped, rotated-unflipped, unrotated-flipped, and rotated-flipped. Here we not only demonstrate orientational assembly of directionally dependent microstructures, but also present design considerations for future work.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b904153bDOI Listing

Publication Analysis

Top Keywords

microfluidic channel
12
sorting directionally
8
directionally oriented
8
microstructures
8
railed microfluidics
8
order sort
8
sort microstructures
8
sorting
5
oriented microstructures
4
microstructures railed
4

Similar Publications

UV-vis spectroscopy is a workhorse in analytical chemistry that finds application in life science, organic synthesis, and energy technologies like photocatalysis. In its traditional implementation with cuvettes, it requires sample volumes in the milliliter range. Here, we show how nanofluidic scattering spectroscopy (NSS), which measures visible light scattered from a single nanochannel in a spectrally resolved way, can reduce this sample volume to the attoliter range for solute concentrations in the mM regime, which corresponds to as few as 10 probed molecules.

View Article and Find Full Text PDF

Integrating Particle Motion Tracking into Thermal Gel Electrophoresis for Label-Free Sugar Sensing.

ACS Sens

January 2025

Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202, United States.

Bioanalytical sensors are adept at quantifying target analytes from complex sample matrices with high sensitivity, but their multiplexing capacity is limited. Conversely, analytical separations afford great multiplexing capacity but typically require analyte labeling to increase sensitivity. Here, we report the development of a separation-based sensor to sensitively quantify unlabeled polysaccharides using particle motion tracking within a microfluidic electrophoresis platform.

View Article and Find Full Text PDF

A microfluidics platform for simultaneous evaluation of sensitivity and side effects of anti-cancer drugs using a three-dimensional culture method.

Sci Rep

January 2025

Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu , Tokyo, 183-8509, Japan.

Organoids are stem cell-derived three-dimensional tissue cultures composed of multiple cell types that recapitulate the morphology and functions of their in vivo counterparts. Organ-on-a-chip devices are tiny chips with interconnected wells and channels designed using a perfusion system and microfluidics to precisely mimic the in vivo physiology and mechanical forces experienced by cells in the body. These techniques have recently been used to reproduce the structure and function of organs in vitro and are expected to be promising alternatives for animal experiments in the future.

View Article and Find Full Text PDF

Circulating Tumor Cells (CTCs) in blood encompass DNA, RNA, and protein biomarkers, but clinical utility is limited by their rarity. To enable tumor epitope-agnostic interrogation of large blood volumes, we developed a high-throughput microfluidic device, depleting hematopoietic cells through high-flow channels and force-amplifying magnetic lenses. Here, we apply this technology to analyze patient-derived leukapheresis products, interrogating a mean blood volume of 5.

View Article and Find Full Text PDF

Cancer metastasis involves cell migration from their primary organ foci into vascular channels, followed by dissemination to prospective colonization sites. Vascular entry of tumor cells or intravasation involves their breaching stromal and endothelial extracellular matrix (ECM) and the endothelial barriers. How the kinetics of this breach are confounded by chronic inflammatory stresses seen in diabetes and aging remains ill-investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!