Peroxisomal dysfunction in inflammatory childhood white matter disorders: an unexpected contributor to neuropathology.

J Child Neurol

Department of Pediatrics, Division of Developmental Neurogenetics, Charles Darby Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina 29425, USA.

Published: September 2009

The peroxisome, an ubiquitous subcellular organelle, plays an important function in cellular metabolism, and its importance for human health is underscored by the identification of fatal disorders caused by genetic abnormalities. Recent findings indicate that peroxisomal dysfunction is not only restricted to inherited peroxisomal diseases but also to disease processes associated with generation of inflammatory mediators that downregulate cellular peroxisomal homeostasis. Evidence indicates that leukodystrophies (i.e. X-linked adrenoleukodystrophy, globoid cell leukodystrophy, and periventricular leukomalacia) may share common denominators in the development and progression of the inflammatory process and thus in the dysfunctions of peroxisomes. Dysfunctions of peroxisomes may therefore contribute in part to white matter disease and to the mental and physical disabilities that develop in patients affected by these diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3077730PMC
http://dx.doi.org/10.1177/0883073809338327DOI Listing

Publication Analysis

Top Keywords

peroxisomal dysfunction
8
white matter
8
dysfunctions peroxisomes
8
peroxisomal
4
dysfunction inflammatory
4
inflammatory childhood
4
childhood white
4
matter disorders
4
disorders unexpected
4
unexpected contributor
4

Similar Publications

Nowadays, intracerebral hemorrhage (ICH) is the main cause of death and disability, and motor impairment is a common sequel to ICH. Electroacupuncture (EA) has been widely used for functional recovery after ICH. However, its role and associated regulatory mechanisms in rehabilitation after ICH remain poorly understood.

View Article and Find Full Text PDF

Ischemia-reperfusion (I/R) injury is a significant clinical problem impacting the heart and other organs, such as the kidneys and liver. This study explores the protective effects of oxycodone on myocardial I/R injury and its underlying mechanisms. Using a myocardial I/R model in Sprague-Dawley (SD) rats and an oxygen-glucose deprivation/reoxygenation (OGD/R) model in H9c2 cells, we administered oxycodone and inhibited AMP-activated protein kinase (AMPK) with Compound C (C.

View Article and Find Full Text PDF

Obesity is characterized by the enlargement of adipose tissue due to an increased calorie intake exceeding the body's energy expenditure. Changes in the size of adipose tissue can lead to harmful consequences, with excessive fat accumulation resulting in adipocyte hypertrophy and promoting metabolic dysfunction. These adiposity-associated pathologies can be influenced by dietary components and their potential health benefits.

View Article and Find Full Text PDF

: Peroxisome proliferator-activated receptor gamma (PPARγ) is a fatty acid-binding transcription activator of the adipokine chemerin. The key role of PPARγ in adipogenesis was established by reports on adipose tissue-resident macrophages that express PPARγ. The present study examined PPARγ macrophages in human skeletal muscle tissues, their response to fatty acid (FA) species, and their correlations with age, obesity, adipokine expression, and an abundance of other macrophage phenotypes.

View Article and Find Full Text PDF

Cinnamic acid alleviates endothelial dysfunction and oxidative stress by targeting PPARδ in obesity and diabetes.

Chin Med

January 2025

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.

Objective: Cinnamic acid (CA) is a bioactive compound isolated from cinnamon. It has been demonstrated to ameliorate inflammation and metabolic diseases, which are associated with endothelial dysfunction. This study was aimed to study the potential protective effects of CA against diabetes-associated endothelial dysfunction and its underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!