Pandemic influenza A viruses that emerge from animal reservoirs are inevitable. Therefore, rapid genomic analysis and creation of vaccines are vital. We developed a multisegment reverse transcription-PCR (M-RTPCR) approach that simultaneously amplifies eight genomic RNA segments, irrespective of virus subtype. M-RTPCR amplicons can be used for high-throughput sequencing and/or cloned into modified reverse-genetics plasmids via regions of sequence identity. We used these procedures to rescue a contemporary H3N2 virus and a swine origin H1N1 virus directly from human swab specimens. Together, M-RTPCR and the modified reverse-genetics plasmids that we designed streamline the creation of vaccine seed stocks (9 to 12 days).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2748056PMC
http://dx.doi.org/10.1128/JVI.01109-09DOI Listing

Publication Analysis

Top Keywords

swine origin
8
influenza viruses
8
modified reverse-genetics
8
reverse-genetics plasmids
8
single-reaction genomic
4
genomic amplification
4
amplification accelerates
4
accelerates sequencing
4
sequencing vaccine
4
vaccine production
4

Similar Publications

Interplay of swine acute diarrhoea syndrome coronavirus and the host intrinsic and innate immunity.

Vet Res

January 2025

Department of Preventive Veterinary Medicine, Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.

Swine acute diarrhoea syndrome coronavirus (SADS-CoV), a novel HKU2-related coronavirus of bat origin, is a newly emerged swine enteropathogenic coronavirus that causes severe diarrhoea in piglets. SADS-CoV has a broad cell tropism with the capability to infect a wide variety of cells from human and diverse animals, which implicates its ability to hold high risks of cross-species transmission. The intracellular antiviral immunity, comprised of the intrinsic and innate immunity, represents the first line of host defence against viral infection prior to the onset of adaptive immunity.

View Article and Find Full Text PDF

Background: Gastrointestinal diseases in weaned piglets are a frequent cause of high morbidity and mortality in domestic pigs. The use of antibiotics is problematic due to increasing antibiotic resistance in bacterial populations, for which reason the use of suitable probiotics is highly recommended to maintain animal health and welfare.

Results: In this study, 57 strains of biologically safe lactic acid bacteria (LAB) and bifidobacteria originating from the gastrointestinal tract (GIT) of pigs were identified and characterized in terms of their probiotic properties for potential use in weaned piglets.

View Article and Find Full Text PDF

First isolation of from clinical specimens collected on a pig farm in Poland.

J Vet Res

December 2024

Department of Infectious, Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland.

Introduction: Successful retrieval of from porcine clinical specimens has been rarely described, and data has only been obtained from a few swine-producing countries. Therefore, the aim of this study was the isolation of recovered from a specimen originating from a commercial pig farm located in Poland.

Material And Methods: Seven dead 12-week-old pigs weighing 24-26 kg with joint swelling of the hind legs were selected on a modern farrow-to-nursery farm in Poland in October 2023.

View Article and Find Full Text PDF

Spatiotemporal dynamics of early oogenesis in pigs.

Genome Biol

January 2025

College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China.

Background: In humans and other mammals, the process of oogenesis initiates asynchronously in specific ovarian regions, leading to the localization of dormant and growing follicles in the cortex and medulla, respectively; however, the current understanding of this process remains insufficient.

Results: Here, we integrate single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) to comprehend spatial-temporal gene expression profiles and explore the spatial organization of ovarian microenvironments during early oogenesis in pigs. Projection of the germ cell clusters at different stages of oogenesis into the spatial atlas unveils a "cortical to medullary (C-M)" distribution of germ cells in the developing porcine ovaries.

View Article and Find Full Text PDF
Article Synopsis
  • The bacterial pathogen, significant in both animals and humans, is linked to a variety of infections, highlighting the need to understand its genomic and metabolic features for effective control.
  • Whole-genome sequencing and antimicrobial susceptibility testing were utilized to analyze 83 genomes from multiple animal hosts, revealing that the strains are not specific to hosts or body sites, indicating a broader infection potential.
  • The study found conserved virulence genes and metabolic versatility in the pathogen, which may enhance its survival and competitiveness, raising concerns about its zoonotic potential and health impacts on humans and animals.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!