Multi-axial mechanical stimulation of HUVECs demonstrates that combined loading is not equivalent to the superposition of individual wall shear stress and tensile hoop stress components.

J Biomech Eng

Department of Mechanical and Biomedical Engineering and National Centre for Biomedical Engineering Science, National University of Ireland, Galway, University Road, Galway, Ireland.

Published: August 2009

Over the past 25 years, many laboratory based bioreactors have been used to study the cellular response to hemodynamic forces. The vast majority of these studies have focused on the effect of a single isolated hemodynamic force, generally consisting of a wall shear stress (WSS) or a tensile hoop strain (THS). However, investigating the cellular response to a single isolated force does not accurately represent the true in vivo situation, where a number of forces are acting simultaneously. This study used a novel bioreactor to investigate the cellular response of human umbilical vein endothelial cells (HUVECs) exposed to a combination of steady WSS and a range of cyclic THS. HUVECs exposed to a range of cyclic THS (0-12%), over a 12 h testing period, expressed an upregulation of both ICAM-1 and VCAM-1. HUVECs exposed to a steady WSS (0 dynes/cm2 and 25 dynes/cm2), over a 12 h testing period, also exhibited an ICAM-1 upregulation but a VCAM-1 downregulation, where the greatest level of WSS stimulus resulted in the largest upregulation and downregulation of ICAM-1 and VCAM-1, respectively. A number of HUVEC samples were exposed to a high steady WSS (25 dynes/cm2) combined with a range of cyclic THS (0-4%, 0-8%, and 0-12%) for a 12 h testing period. The initial ICAM-1 upregulation, due to the WSS alone, was downregulated with the addition of a cyclic THS. It was observed that the largest THS (0-12%) had the greatest reducing effect on the ICAM-1 upregulation. Similarly, the initial VCAM-1 downregulation, due to the high steady WSS alone, was further downregulated with the addition of a cyclic THS. A similar outcome was observed when HUVEC samples were exposed to a low steady WSS combined with a range of cyclic THS. However, the addition of a THS to the low WSS did not result in an expected ICAM-1 downregulation. In fact, it resulted in a trend of unexpected ICAM-1 upregulation. The unexpected cellular response to the combination of a steady WSS and a cyclic THS demonstrates that such a response could not be determined by simply superimposing the cellular responses exhibited by ECs exposed to a steady WSS and a cyclic THS that were applied in isolation.

Download full-text PDF

Source
http://dx.doi.org/10.1115/1.3127248DOI Listing

Publication Analysis

Top Keywords

cyclic ths
32
steady wss
28
cellular response
16
range cyclic
16
icam-1 upregulation
16
huvecs exposed
12
testing period
12
wss
11
ths
11
wall shear
8

Similar Publications

Background: The Interleukin-6 (IL-6)-signal transducer and activator of transcription 3 (STAT3) pathway, along with the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, are critical contributors to neuroinflammation in Alzheimer's disease (AD). Although previous research outside the context of AD has indicated that the IL-6-STAT3 pathway may regulate the cGAS-STING pathway, the exact molecular mechanisms through which IL-6-STAT3 influences cGAS-STING in AD are still not well understood.

Methods: The activation of the IL-6-STAT3 and cGAS-STING pathways in the hippocampus of 5×FAD and WT mice was analyzed using WB and qRT-PCR.

View Article and Find Full Text PDF

The human complement pathway plays a pivotal role in immune defence, homeostasis, and autoimmunity regulation, and complement-based therapeutics have emerged as promising interventions, with both antagonistic and agonistic approaches being explored. The classical pathway of complement is initiated when the C1 complex binds to hexameric antibody platforms. Recent structural data revealed that C1 binds to small, homogeneous interfaces at the periphery of the antibody platforms.

View Article and Find Full Text PDF

Aims: As heart failure (HF) progresses, ATP levels in myocardial cells decrease, and myocardial contractility also decreases. Inotropic drugs improve myocardial contractility but increase ATP consumption, leading to poor prognosis. Kyoto University Substance 121 (KUS121) is known to selectively inhibit the ATPase activity of valosin-containing protein, maintain cellular ATP levels, and manifest cytoprotective effects in several pathological conditions.

View Article and Find Full Text PDF

The cAMP analogue 8-Br-cAMP-AM (8-Br) confers marked protection against global ischaemia/reperfusion of isolated perfused heart. We tested the hypothesis that 8-Br is also protective under clinically relevant conditions (regional ischaemia) when applied either before ischemia or at the beginning of reperfusion, and this effect is associated with the mitochondrial permeability transition pore (MPTP). 8-Br (10 μM) was administered to Langendorff-perfused rat hearts for 5 min either before or at the end of 30 min regional ischaemia.

View Article and Find Full Text PDF

Loss of the thyroid hormone-binding protein Crym renders striatal neurons more vulnerable to mutant huntingtin in Huntington's disease.

Hum Mol Genet

March 2015

CEA, DSV, I²BM, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France, Neurodegenerative Diseases Laboratory, CNRS CEA URA 2210, F-92265 Fontenay-aux-Roses, France,

The mechanisms underlying preferential atrophy of the striatum in Huntington's disease (HD) are unknown. One hypothesis is that a set of gene products preferentially expressed in the striatum could determine the particular vulnerability of this brain region to mutant huntingtin (mHtt). Here, we studied the striatal protein µ-crystallin (Crym).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!