Interactions between dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylserine (DPPS), combined both as binary lipid bilayer assemblies and separately, under the influence of divalent Mg2+, a membrane bilayer fusogenic agent, are reported. Infrared vibrational spectroscopic analyses of the lipid acyl chain methylene symmetric stretching modes indicate that aggregates of the two phospholipid components exist as domains heterogeneously distributed throughout the binary bilayer system. In the presence of Mg2+, DPPS maintains an ordered orthorhombic subcell gel phase structure through the phase transition temperature, while the DPPC component is only minimally perturbed with respect to the gel to liquid crystalline phase change. The addition of Mg2+ induces a reorganization of the lipid domains in which the gel phase acyl chain planes rearrange from a hexagonal configuration toward a triclinic, parallel chain subcell. Examination of the acyl chain methylene deformation modes at low temperatures allows a determination of DPPS microdomain sizes, which decrease upon the addition of DPPC-d62 in the absence of Mg2+. On adding Mg2+, a uniform DPPS domain size is observed in the binary mixtures. In either the presence or absence of Mg2+, DPPC-d62 aggregates remain in a configuration for which microdomain sizes are not spectroscopically measurable. Analysis of the acyl chain methylene deformation modes for DPPC-d62 in the binary system suggests that clusters of the deuterated lipids are distributed throughout the DPPS matrix. Light scattering and fluorescence measurements indicate that Mg2+ induces both the aggregation and the fusion of the lipid assemblies as a function of the ratio of DPPS to DPPC. The structural reorganizations of the lipid microdomains within the DPPS-DPPC bilayer are interpreted in the context of current concepts regarding lipid bilayer fusion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754194 | PMC |
http://dx.doi.org/10.1021/jp9011944 | DOI Listing |
Life Metab
April 2024
State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
Interorgan lipid transport is crucial for organism development and the maintenance of physiological function. Here, we demonstrate that long-chain acyl-CoA synthetase (dAcsl), which catalyzes the conversion of fatty acids into acyl-coenzyme As (acyl-CoAs), plays a critical role in regulating systemic lipid homeostasis. dAcsl deficiency in the fat body led to the ectopic accumulation of neutral lipids in the gut, along with significantly reduced lipoprotein contents in both the fat body and hemolymph.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.
While synthesizing circular polymers with telechelic polyolefin building blocks recently emerged as a promising strategy for addressing conventional polyethylenes' sustainability challenges, the lack of telechelic PP (PP) with sufficient difunctional purity for polycondensation has been limiting the development of circular polypropylenes with PP-like structures and properties. Here we described a combined approach of coordinative chain transfer polymerization and transition-metal-catalyzed quenching reaction with various acyl chlorides, affording PPs with a high difunctional ratio (up to ∼99%) and broad end functional group scope. The steric effect of polymeryl-Zn species and the role of Pd catalyst were revealed by DFT.
View Article and Find Full Text PDFFront Plant Sci
January 2025
School of Life Sciences, East China Normal University, Shanghai, China.
Frequent and extreme drought exerts profound effects on vegetation growth and production worldwide. It is imperative to identify key genes that regulate plant drought resistance and to investigate their underlying mechanisms of action. Long-chain fatty acids and their derivatives have been demonstrated to participate in various stages of plant growth and stress resistance; however, the effects of medium-chain fatty acids on related functions have not been thoroughly studied.
View Article and Find Full Text PDFCarbohydr Res
January 2025
Department of Chemical Sciences, University of Naples Federico II, Naples, I-80126, Italy.
Herein we report the synthesis of a novel di-O-acylated DNJ derivative, conceived to study whether iminosugar derivatization with a lipophilic acyl moiety could positively affect its antibacterial properties. The well-known PS-TPP/I/ImH activating system was used to readily install the acyl chains on the iminosugar, leading to the desired compound in high yield. Biological assays revealed that a di-O-lauroyl DNJ derivative enhanced the antibacterial effect of gentamicin and amikacin against S.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Division of Molecular Psychiatry, Center of Mental Health, University of Hospital Würzburg, 97080 Würzburg, Germany.
Background: The inheritance of the short allele, encoding the serotonin transporter (SERT) in humans, increases susceptibility to neuropsychiatric and metabolic disorders, with aging and female sex further exacerbating these conditions. Both central and peripheral mechanisms of the compromised serotonin (5-HT) system play crucial roles in this context. Previous studies on SERT-deficient (Sert) mice, which model human SERT deficiency, have demonstrated emotional and metabolic disturbances, exacerbated by exposure to a high-fat Western diet (WD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!