A supported catalyst and a catalytic process have been developed for the conversion of carbgas (CO2 + (100 ppm) H2O + 1% H2) as a renewable source of energy and as a measure for the control of carbon dioxide -- a greenhouse gas. The carbgas was passed over a trimetallic supported catalyst consisting of ruthenium (Ru), manganese (Mn) and cobalt (Co) dispersed on a high surface area titanium dioxide support at 673 K and at atmospheric pressure with a gas space velocity of 6000-7200/h. The catalytic reaction produces methanol and propyne in a fixed bed reactor system. The catalyst simultaneously splits water into hydrogen and oxygen, and carbon dioxide into carbon and oxygen under very mild reaction conditions and at atmospheric pressure. The oxygen generated during the reaction and the addition of hydrogen during the catalytic reaction not only generates a considerable amount of energy for the reaction to proceed but also sustains the oxidation states of Ru, Mn and Co. This process maintains the specific active oxidation states of the metals during the catalytic run -- a key step in the process.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330902806624DOI Listing

Publication Analysis

Top Keywords

supported catalyst
12
trimetallic supported
8
renewable source
8
source energy
8
carbon dioxide
8
atmospheric pressure
8
catalytic reaction
8
oxidation states
8
reaction
5
catalyst
4

Similar Publications

Self-Reconstruction of High Entropy Alloys for Efficient Alkaline Hydrogen Evolution.

Small

January 2025

Institute for Sustainable Energy and Resources, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong, 266071, China.

Alkaline water (HO) electrolysis is currently a commercialized green hydrogen (H) production technology, yet the unsatisfactory hydrogen evolution reaction (HER) performance severely limits its energy conversion efficiency and cost reduction. Herein, PtRuFeCoNi high entropy alloys (HEAs) is synthesized and subsequently exploited electrochemically induced structural oxidation processes to construct self-reconfigurable HEAs, as an efficient alkaline HER catalyst. The optimized self-reconstructed PtRuFeCoNi HEAs with the HEAs and cobalt rutheniate interface (HEAs-CoRuO) exhibits excellent alkaline HER performance, requiring just 11.

View Article and Find Full Text PDF

Chlorophenols are difficult to degrade and mineralize by traditional advanced oxidation processes due to the strong electronegativity of chlorine. Here, a dual-site atomically dispersed catalyst (FeMoNC) is reported, which Fe/Mo supported on mesoporous nitrogen-doped carbon is prepared through high-temperature migration. The FeMoNC exhibits a high dechlorination rate of 93.

View Article and Find Full Text PDF

Droplet-Based EPR Spectroscopy for Real-Time Monitoring of Liquid-Phase Catalytic Reactions.

Small Methods

January 2025

Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland.

In situ monitoring is essential for catalytic process design, offering real-time insights into active structures and reactive intermediates. Electron paramagnetic resonance (EPR) spectroscopy excels at probing geometric and electronic properties of paramagnetic species during reactions. Yet, state-of-the-art liquid-phase EPR methods, like flat cells, require custom resonators, consume large amounts of reagents, and are unsuited for tracking initial kinetics or use with solid catalysts.

View Article and Find Full Text PDF

The direct transformation of methane into C oxygenates such as acetic acid selectively using molecular oxygen (O) is a significant challenge due to the chemical inertness of methane, the difficulty of methane C-H bond activation/C-C bond coupling and the thermodynamically favored over-oxidation. In this study, we have successfully developed a porous aluminium metal-organic framework (MOF)-supported single-site mono-copper(ii) hydroxyl catalyst [MIL-53(Al)-Cu(OH)], which is efficient in directly oxidizing methane to acetic acid in water at 175 °C with a remarkable selectivity using only O. This heterogeneous catalyst achieved an exceptional acetic acid productivity of 11 796 mmol mol h in 9.

View Article and Find Full Text PDF

The protonolysis and redox reactivity of a Ce(IV) carbonate complex supported by the Kläui tripodal ligand [(η-CH)Co{P(O)(OEt)}] (L) have been studied. Whereas treatment of [Ce(L)(CO)] () with RCOH afforded [Ce(L)(RCO)] ( = Me (), Ph (), 2-NOCH ()), the reaction of with PhCHCOH resulted in formation of a mixture of Ce(IV) () and Ce(III) () carboxylate species. In benzene in the dark, was slowly converted into via Ce(IV)-O(carboxylate) homolysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!