Peat humic acid was fractionated by tangential ultrafiltration into six nominal molecular weight (NMW) fractions, HA5-10, HA10-20, HA20-50, HA50-100, HA100-300 and HA > 300, which were purified by dialysis using a 0.5 kDa membrane. The absorbing and emission properties of the separated fractions were compared and their ability to generate singlet oxygen under light excitation was evaluated, using furfuryl alcohol (FFA) as a singlet oxygen scavenger. The absorbance, the emission intensity, and the apparent first order rate constants of FFA loss were normalized per mole of organic carbon (a*, IF*, and k*, respectively). The fraction absorbance decreased with NMW, except for HA > 300 which was less absorbing than HA100-300. The low NMW fractions and the HA > 300 fraction generally showed lower k* and IF* values compared to the HA50-100 and HA100-300 fractions. A plot of k* versus IF* indicates that the first order rate constant of FFA photo-oxygenation increased with the intensity of fluorescence at 380, 430, and 500 nm (R2 = 0.77-0.84). This shows that the distribution of fluorescent centers among fractions paralleled that of photosensitizing centers. Plotting k* or IF* versus a* at365 nm reveals the apparent relative quantum efficiency of the different fractions. Higher values for low NMW fractions and HA50-100 are either due higher percentages of absorbing centers able to produce singlet oxygen or exhibit fluorescence or to lower quenching processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es802964m | DOI Listing |
ACS Sustain Chem Eng
January 2025
Norwegian University of Life Sciences (NMBU), Faculty of Chemistry, Biotechnology and Food Science, Chr. Magnus Falsens vei 18, Ås 1433, Norway.
Cellulose-derived biomaterials offer a sustainable and versatile platform for various applications. Enzymatic engineering of these fibers, particularly using lytic polysaccharide monooxygenases (LPMOs), shows promise due to the ability to introduce functional groups onto cellulose surfaces, potentially enabling further functionalization. However, harnessing LPMOs for fiber engineering remains challenging, partly because controlling the enzymatic reaction is difficult and partly because limited information is available about how LPMOs modify the fibers.
View Article and Find Full Text PDFChemSusChem
March 2019
Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands.
Lignin is an attractive material for the production of renewable chemicals, materials and energy. However, utilization is hampered by its highly complex and variable chemical structure, which requires an extensive suite of analytical instruments to characterize. Here, we demonstrate that straightforward attenuated total reflection (ATR)-FTIR analysis combined with principle component analysis (PCA) and partial least squares (PLS) modelling can provide remarkable insight into the structure of technical lignins, giving quantitative results that are comparable to standard gel-permeation chromatography (GPC) and 2D heteronuclear single quantum coherence (HSQC) NMR methods.
View Article and Find Full Text PDFSci Rep
September 2017
Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
Extracellular vesicles (EVs) play a pivotal role in cell-to-cell communication and have been shown to take part in several physiological and pathological processes. EVs have traditionally been purified by ultracentrifugation (UC), however UC has limitations, including resulting in, operator-dependant yields, EV aggregation and altered EV morphology, and moreover is time consuming. Here we show that commercially available bind-elute size exclusion chromatography (BE-SEC) columns purify EVs with high yield (recovery ~ 80%) in a time-efficient manner compared to current methodologies.
View Article and Find Full Text PDFAnal Chim Acta
April 2011
Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Moscow region, Russia.
Polyacrylamide gel electrophoresis of chernozem soil humic acids (HAs) followed by observation under UV (312 nm) excitation light reveals new low molecular weight (MW) fluorescent fractions. Ultrafiltration of HAs sample in 7 M urea on a membrane of low nominal MW retention (NMWR, 5 kDa) was repetitively used for separation of fluorescent and non-fluorescent species. Thirty ultrafiltrates and the final retentate R were obtained.
View Article and Find Full Text PDFEnviron Sci Technol
November 2009
State Key Lab of Urban Water Resource and Environment (HIT), Harbin Institute of Technology, Harbin, P. R. China.
The effects of humic acid (HA) and its different nominal molecular weight (NMW) fractions on the phenol oxidation by permanganate were studied. Phenol oxidation by permanganate was enhanced by the presence of HA at pH 4-8, while slightly inhibited at pH 9-10. The effects of HA on phenol oxidation by permanganate were dependent on HA concentration and permanganate/phenol molar ratios.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!