Juvenile Solea senegalensis were exposed to fresh sediments from three stations of the Sado estuary (Portugal) in 28-day laboratory assays. Sediments revealed distinct levels of total organic matter, fine fraction, redox potential, trace elements (arsenic, cadmium, chromium, copper, nickel, lead and zinc) and organic contaminants (polycyclic aromatic hydrocarbons, polychlorinated biphenyls and a pesticide: dichloro diphenyl trichloroethane). Organisms were surveyed for contaminant bioaccumulation and induction of two hepatic biochemical biomarkers: metallothionein (MT) and cytochrome P450 (CYP1A), as potential indicators of exposure to metallic and organic contaminants, respectively. Using an integrative approach it was established that, although bioaccumulation is in general accordance with sediment contamination, lethality and biomarker responses are not linearly dependent of the cumulative concentrations of sediment contaminants but rather of their bioavailability and synergistic effects in organisms. It is concluded that metals and organic contaminants modulate both MT and CYP1A induction and it is suggested that reactive oxygen species may be the link between responses and effects of toxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10646-009-0373-7 | DOI Listing |
J Environ Manage
January 2025
Institute for Sustainability, Energy and Environment, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
Critical source areas (CSAs) can act as a source of phosphorus (P) during intermittent rainfall events and contribute to dissolved P loss via runoff. Dissolved forms of P are readily accessible for plant and algal uptake; hence it is a concern in terms of the eutrophication of freshwater bodies. The potential of CSAs to release dissolved P to surface runoff upon intermittent short-term submergence caused by different rainfall events has not been studied at a field-scale in New Zealand previously.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Krakow city, Poland.
Fly ash, produced during coal combustion for energy making, which is recognized as an industrial by-product, could lead to environmental health hazards. Subsequently, fly ash found that an exceptional adsorption performance for the removal of various toxic pollutants, the adsorption capacity of fly ash might be altered by introducing physical/chemical stimulation. Successfully converting fly ash into zeolites not only recovers their disposal difficulties but also transforms unwanted materials into merchandisable products for various industrial applications.
View Article and Find Full Text PDFFood Chem
December 2024
School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China. Electronic address:
Metal-organic frameworks (MOFs) are highly valued for their electronic and optical capabilities in food sample analysis. Implementing MOF-based sensors is crucial for public health safety. This review centers on electrochemiluminescence (ECL) MOFs for monitoring food samples, highlighting signal changes from combining MOFs with Ru(bpy), TPrA, nanomaterials, and biomolecules.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Centre for Environmental and Climate Science, Lund University, Sweden.
Urban environments are exposed to a substantial range of anthropic pressures, including chemical exposure. While trace metals and legacy pollutants have been well documented, the extent of wildlife exposure to emerging contaminants has received little attention, in terrestrial mammals. Concentrations of trace elements (Ag, Al, As, Cd, Co, Cr, Cu, Fe, Mn, Pb and Zn) and 48 organic pollutants (Polychlorinated Biphenyls: PCBs, Organochlorine Pesticides: OCPs, Polycyclic Aromatic Hydrocarbons: PAHs, phthalates and pyrethroid pesticides) were measured in tissues of European hedgehogs (Erinaceus europaeus) in southern Sweden.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
The combined application of dissimilatory iron-reducing bacteria (DIRB) and Fe(III) nanoparticles has garnered widespread interest in the contaminants transformation and removal. The efficiency of this composite system relies on the extracellular electron transfer (EET) process between DIRB and Fe(III) nanoparticles. While modifications to Fe(III) nanoparticles have demonstrated improvements in EET, enhancing DIRB activity also shows potential for further EET enhancement, meriting further investigation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!