ClinSeq is a pilot project to investigate the use of whole-genome sequencing as a tool for clinical research. By piloting the acquisition of large amounts of DNA sequence data from individual human subjects, we are fostering the development of hypothesis-generating approaches for performing research in genomic medicine, including the exploration of issues related to the genetic architecture of disease, implementation of genomic technology, informed consent, disclosure of genetic information, and archiving, analyzing, and displaying sequence data. In the initial phase of ClinSeq, we are enrolling roughly 1000 participants; the evaluation of each includes obtaining a detailed family and medical history, as well as a clinical evaluation. The participants are being consented broadly for research on many traits and for whole-genome sequencing. Initially, Sanger-based sequencing of 300-400 genes thought to be relevant to atherosclerosis is being performed, with the resulting data analyzed for rare, high-penetrance variants associated with specific clinical traits. The participants are also being consented to allow the contact of family members for additional studies of sequence variants to explore their potential association with specific phenotypes. Here, we present the general considerations in designing ClinSeq, preliminary results based on the generation of an initial 826 Mb of sequence data, the findings for several genes that serve as positive controls for the project, and our views about the potential implications of ClinSeq. The early experiences with ClinSeq illustrate how large-scale medical sequencing can be a practical, productive, and critical component of research in genomic medicine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2752125 | PMC |
http://dx.doi.org/10.1101/gr.092841.109 | DOI Listing |
Genet Med
December 2024
Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA; Harvard Medical School, Boston, MA.
Purpose: Genomic sequencing of newborns (NBSeq) can initiate disease surveillance and therapy for children, and may identify at-risk relatives through reverse cascade testing. We explored genetic risk communication and reverse cascade testing among families of newborns who underwent exome sequencing and had a risk for autosomal dominant disease identified.
Methods: We conducted semi-structured interviews with parents of newborns enrolled in the BabySeq Project who had a pathogenic or likely-pathogenic (P/LP) variant associated with an autosomal dominant (AD) childhood- and/or adult-onset disease returned.
Virol J
December 2024
Virology Department, Croatian Veterinary Institute, Zagreb, Croatia.
Background: Canine adipose-derived mesenchymal stem cells (cAD-MSCs) demonstrate promising tissue repair and regeneration capabilities. However, the procurement and preservation of these cells or their secreted factors for therapeutic applications pose a risk of viral contamination, and the consequences for cAD-MSCs remain unexplored. Consequently, this research sought to assess the impact of canid alphaherpesvirus 1 (CHV) on the functional attributes of cAD-MSCs, including gene expression profiles and secretome composition.
View Article and Find Full Text PDFBMC Musculoskelet Disord
December 2024
Physical medicine & rehabilitation research center, School of medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Background: Pompe disease is a glycogen storage disease primarily affecting striated muscles. Despite its main manifestation in muscles, patients with Pompe disease may exhibit non-muscle symptoms, such as hearing loss, suggesting potential involvement of sensory organs or the nervous system due to glycogen accumulation.
Aims: This study aimed to evaluate the presence of concomitant small and large fiber neuropathy in patients with Pompe disease.
Mol Med
December 2024
Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA.
Vertebrates differ over 100,000-fold in responses to pro-inflammatory agonists such as bacterial lipopolysaccharide (LPS), complicating use of animal models to study human sepsis or inflammatory disorders. We compared transcriptomes of resting and LPS-exposed blood from six LPS-sensitive species (rabbit, pig, sheep, cow, chimpanzee, human) and four LPS-resilient species (mice, rats, baboon, rhesus), as well as plasma proteomes and lipidomes. Unexpectedly, at baseline, sensitive species already had enhanced expression of LPS-responsive genes relative to resilient species.
View Article and Find Full Text PDFMol Psychiatry
December 2024
Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA.
Psychiatric disorders are highly comorbid, heritable, and genetically correlated [1-4]. The primary objective of cross-disorder psychiatric genetics research is to identify and characterize both the shared genetic factors that contribute to convergent disease etiologies and the unique genetic factors that distinguish between disorders [4, 5]. This information can illuminate the biological mechanisms underlying comorbid presentations of psychopathology, improve nosology and prediction of illness risk and trajectories, and aid the development of more effective and targeted interventions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!