The eukaryotic nucleolus is multifunctional and involved in the metabolism and assembly of many different RNAs and ribonucleoprotein particles as well as in cellular functions, such as cell division and transcriptional silencing in plants. We previously showed that Arabidopsis thaliana exon junction complex proteins associate with the nucleolus, suggesting a role for the nucleolus in mRNA production. Here, we report that the plant nucleolus contains mRNAs, including fully spliced, aberrantly spliced, and single exon gene transcripts. Aberrant mRNAs are much more abundant in nucleolar fractions, while fully spliced products are more abundant in nucleoplasmic fractions. The majority of the aberrant transcripts contain premature termination codons and have characteristics of nonsense-mediated decay (NMD) substrates. A direct link between NMD and the nucleolus is shown by increased levels of the same aberrant transcripts in both the nucleolus and in Up-frameshift (upf) mutants impaired in NMD. In addition, the NMD factors UPF3 and UPF2 localize to the nucleolus, suggesting that the Arabidopsis nucleolus is therefore involved in identifying aberrant mRNAs and NMD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2729600PMC
http://dx.doi.org/10.1105/tpc.109.067736DOI Listing

Publication Analysis

Top Keywords

nucleolus
9
nonsense-mediated decay
8
arabidopsis nucleolus
8
nucleolus suggesting
8
fully spliced
8
aberrant mrnas
8
aberrant transcripts
8
aberrant
5
nmd
5
aberrant mrna
4

Similar Publications

The nucleolus is a major subnuclear compartment where ribosomal DNA (rDNA) is transcribed and ribosomes are assembled. In addition, recent studies have shown that the nucleolus is a dynamic organizer of chromatin architecture that modulates developmental gene expression. rDNA gene units are assembled into arrays located in the p-arms of five human acrocentric chromosomes.

View Article and Find Full Text PDF

LINE-1, the NORth star of nucleolar organization.

Genes Dev

January 2025

Institute for Research on Cancer and Aging of Nice (IRCAN), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), University Cote d'Azur, Nice 06107, France

Long interspersed element-1 (LINE-1) retrotransposons are abundant transposable elements in mammals and significantly influence chromosome structure, chromatin organization, and 3D genome architecture. In this issue of , Ataei et al. (doi:10.

View Article and Find Full Text PDF

Bioinformatic Analysis of Actin-Binding Proteins in the Nucleolus During Heat Shock.

Genes (Basel)

December 2024

Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047, Japan.

Background/objectives: Actin plays a crucial role not only in the cytoplasm, but also in the nucleus, influencing various cellular behaviors, including cell migration and gene expression. Recent studies reveal that nuclear actin dynamics is altered by cellular stresses, such as DNA damage; however, the effect of heat shock on nuclear actin dynamics, particularly in the nucleolus, remains unclear. This study aims to elucidate the contribution of nucleolar actin to cellular responses under heat shock conditions.

View Article and Find Full Text PDF

Background/objectives: Nucleolin is a major component of the nucleolus and is involved in various aspects of ribosome biogenesis. However, it is also implicated in non-nucleolar functions such as cell cycle regulation and proliferation, linking it to various pathologic processes. The aim of this study was to use differential gene expression analysis and Weighted Gene Co-expression Network analysis (WGCNA) to identify nucleolin-related regulatory pathways and possible key genes as novel therapeutic targets for cancer, viral infections and other diseases.

View Article and Find Full Text PDF

CRM1 (XPO1) has been well-characterized as a shuttling receptor that mediates the export of protein and RNA cargos to the cytoplasm, and previous analyses have pinpointed several key residues (A541, F572, K568, S1055, and Q742) that modulate CRM1 export activity. CRM1 also has a less studied nuclear function in RNA biogenesis, which is reflected by its localization to the Cajal body and the nucleolus. Here, we have investigated how the mutation of these key residues affects the intranuclear localization of CRM1 and its ability to mediate export of endogenous cargos.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!