HEX-labeled oligonucleotides obtained via typical synthetic protocols may contain more than 15% of material with altered spectral characteristics. We discovered hexachlorofluorescein residue transformation unknown earlier for standard DNA ammonolysis step. HEX residue reacts with ammonium hydroxide yielding acridine derivative, which has differed UV-VIS and fluorescent properties compared to HEX. Therefore, for critical bioassays where sensitivity and/or fluorescent signal differentiation (e.g., in quantitative or multiplexed assays) are essential, the careful RP-HPLC purification step is required.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bc900076e | DOI Listing |
Chem Sci
January 2025
Instituto de Carboquímica (ICB-CSIC) C/Miguel Luesma Castán 4 E-50018 Zaragoza Spain
Fluorescent nitrogen-doped carbon dots (N-GQDs) with long-wavelength emission properties are of increased interest for technological applications. They are widely synthesized through the solvothermal treatment of graphene oxide (GO) using ,-dimethylformamide (DMF) as a cleaving and doping agent. However, this process simultaneously generates undesired interfering blue-emissive by-products.
View Article and Find Full Text PDFThe field of π-conjugated organic materials has seen significant advances in recent years. However, enhancing the functionality of well-established, mass-produced compounds remains a considerable challenge, despite being an intriguing strategy for designing high-value organic materials with low production costs. In this context, vat dyes, known for their wide range of colors and extensive use in the textile industry are particularly attractive.
View Article and Find Full Text PDFChem Sci
January 2025
Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 P. R. China
Developing highly efficient deep-blue multi-resonance thermal activated delayed fluorescence (MR-TADF) materials for ultra-high-definition organic light-emitting diodes (OLEDs) displays that meet the stringent BT.2020 standard remains a significant challenge. In this study, we present a strategy to achieve high-performance deep-blue MR-TADF emitters by integrating a large π-conjugated double-boron-embedded MR skeleton with strategically positioned peripheral steric hindrance groups.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
Colloidal quantum dots (QDs) are promising emitters for biological applications because of their excellent fluorescence, convenient surface modification, and photostability. However, the toxic cadmium composition in the state-of-the-art QDs and their inferior properties in the aqueous phase greatly restrict further use. The performance of water-soluble indium phosphide (InP) QDs lags far behind those of Cd-containing counterparts due to the lack of effective surface protection.
View Article and Find Full Text PDFJ Oleo Sci
January 2025
Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology.
Coelomic fluid of earthworms is a valuable source of novel bioactive compounds with therapeutic applications. To gain insight into the bioactive compounds in the coelomic fluid, this study used Perionyx excavatus, a tropical earthworm distinguished for its remarkable ability for regeneration. This study aimed to identify fluorescent bioactive compounds in the coelomic fluid of P.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!