AI Article Synopsis

  • The study explores how amyloid-beta (Abeta) interacts with iron (Fe) complexes, suggesting that this interaction may play a role in Alzheimer’s disease by enhancing Abeta aggregation and increasing reactive oxygen species (ROS) generation.
  • Using advanced techniques like electrospray ionization mass spectrometry, researchers found a stable 1:1:1 complex of Abeta, Fe(III), and nitrilotriacetic acid (NTA), revealing key details about the binding and potential dissociation of these components.
  • The findings indicate that iron binding alters the redox properties of Abeta, allowing for redox cycling, which can lead to an imbalance in cellular redox state and contribute to the continuous

Article Abstract

The interaction of amyloid-beta (Abeta) and redox-active metals, two important biomarkers present in the senile plaques of Alzheimer's disease (AD) brain, has been suggested to enhance the Abeta aggregation or facilitate the generation of reactive oxygen species (ROS). This study investigates the nature of the interaction between the metal-binding domain of Abeta, viz., Abeta(1-16), and the Fe(III) or Fe(II) complex with nitrilotriacetic acid (NTA). Using electrospray ionization mass spectrometry (ESI-MS), the formation of a ternary complex of Abeta(1-16), Fe(III), and NTA with a stoichiometry of 1:1:1 was identified. MS also revealed that the NTA moiety can be detached via collision-induced dissociation. The cumulative dissociation constants of both Abeta-Fe(III)-NTA and Abeta-Fe(II)-NTA complexes were deduced to be 6.3 x 10(-21) and 5.0 x 10(-12) M(2), respectively, via measurement of the fluorescence quenching of the sole tyrosine residue on Abeta upon formation of the complex. The redox properties of these two complexes were investigated by cyclic voltammetry. The redox potential of the Abeta-Fe(III)-NTA complex was found to be 0.03 V versus Ag/AgCl, which is negatively shifted by 0.54 V when compared to the redox potential of free Fe(III)/Fe(II). Despite such a large potential modulation, the redox potential of the Abeta-Fe(III)-NTA complex is still sufficiently high for a range of redox reactions with cellular species to occur. The Abeta-Fe(II)-NTA complex electrogenerated from the Abeta-Fe(III)-NTA complex was also found to catalyze the reduction of oxygen to produce H(2)O(2). These findings provide significant insight into the role of iron and Abeta in the development of AD. The binding of iron by Abeta modulates the redox potential to a level at which its redox cycling occurs. In the presence of a biological reductant (antioxidant), redox cycling of iron could disrupt the redox balance within the cellular milieu. As a consequence, not only is ROS continuously produced, but oxygen and biological reductants can also be depleted. A cascade of biological processes can therefore be affected. In addition, the strong binding affinity of Abeta toward Fe(III) and Fe(II) indicates Abeta could compete for iron against other iron-containing proteins. In particular, its strong affinity for Fe(II), which is 8 orders of magnitude stronger than that of transferrin, would greatly interfere with iron homeostasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2757041PMC
http://dx.doi.org/10.1021/bi900907aDOI Listing

Publication Analysis

Top Keywords

redox potential
16
abeta-feiii-nta complex
12
redox
10
nitrilotriacetic acid
8
redox properties
8
alzheimer's disease
8
abeta
8
abeta1-16 feiii
8
feiii feii
8
potential abeta-feiii-nta
8

Similar Publications

Phenol-Quinone Redox Couples of Natural Organic Matter Promote Mercury Methylation in Paddy Soil.

Environ Sci Technol

January 2025

National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.

Methylmercury in paddy soils poses threats to food security and thus human health. Redox-active phenolic and quinone moieties of natural organic matter (NOM) mediate electron transfer between microbes and mercury during mercury reduction. However, their role in mercury methylation remains elusive.

View Article and Find Full Text PDF

Combination therapies and other therapeutic approaches targeting the NLRP3 inflammasome and neuroinflammatory pathways: a promising approach for traumatic brain injury.

Immunopharmacol Immunotoxicol

January 2025

Tobacco and Health Research Center, Endocrinology and Metabolism Research Center, Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.

Traumatic brain injury (TBI) precipitates a neuroinflammatory cascade, with the NLRP3 inflammasome emerging as a critical mediator. This review scrutinizes the complex activation pathways of the NLRP3 inflammasome by underscoring the intricate interplay between calcium signaling, mitochondrial disturbances, redox imbalances, lysosomal integrity, and autophagy. It is hypothesized that a combination therapy approach-integrating NF-κB pathway inhibitors with NLRP3 inflammasome antagonists-holds the potential to synergistically dampen the inflammatory storm associated with TBI.

View Article and Find Full Text PDF

Targeting mitochondrial function as a potential therapeutic approach for allergic asthma.

Inflamm Res

January 2025

Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, College of Medical Technology, Guangdong Medical University, Dongguan, 523808, China.

Allergic asthma is a chronic complex airway disease characterized by airway hyperresponsiveness, eosinophilic inflammation, excessive mucus secretion, and airway remodeling, with increasing mortality and incidence globally. The pathogenesis of allergic asthma is influenced by various factors including genetics, environment, and immune responses, making it complex and diverse. Recent studies have found that various cellular functions of mitochondria such as calcium regulation, adenosine triphosphate production, changes in redox potential, and free radical scavenging, are involved in regulating the pathogenesis of asthma.

View Article and Find Full Text PDF

In a quest to innovate biologically active molecules, the benzoylation of 4,6-dimethylpyrimidine-2-thiol hydrochloride (1) with benzoyl chloride derivatives was employed to produce a series of pyrimidine benzothioate derivatives (2-5). Subsequent sulfoxidation of these derivatives (2-5) using hydrogen peroxide and glacial acetic acid yielded a diverse array of pyrimidine sulfonyl methanone derivatives (6-9). In parallel, the sulfoxidation of pyrimidine sulfonothioates (10-12) yielded sulfonyl sulfonyl pyrimidines (13-15), originating from the condensation of compound 1 with sulfonyl chloride derivatives.

View Article and Find Full Text PDF

Tumor microenvironment-responsive engineered hybrid nanomedicine for photodynamic-immunotherapy via multi-pronged amplification of reactive oxygen species.

Nat Commun

January 2025

Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China.

Reactive oxygen species (ROS) is promising in cancer therapy by accelerating tumor cell death, whose therapeutic efficacy, however, is greatly limited by the hypoxia in the tumor microenvironment (TME) and the antioxidant defense. Amplification of oxidative stress has been successfully employed for tumor therapy, but the interactions between cancer cells and the other factors of TME usually lead to inadequate tumor treatments. To tackle this issue, we develop a pH/redox dual-responsive nanomedicine based on the remodeling of cancer-associated fibroblasts (CAFs) for multi-pronged amplification of ROS (ZnPP@FQOS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!