Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2272147 | PMC |
Sci Rep
December 2024
United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan.
Brown rot fungi, the major decomposers in the boreal coniferous forests, cause a unique wood decay pattern but many aspects of brown rot decay mechanisms remain unclear. In this study, decayed wood samples were prepared by cultivation of the brown rot fungi Gloeophyllum trabeum and Coniophora puteana on Japanese coniferous wood of Cryptomeria japonica, and the cutting planes were prepared using broad ion beam (BIB) milling, which enables observation of intact wood, in addition to traditional microtome sections. Samples were observed using field-emission SEM revealing that areas inside the end walls of ray parenchyma cells were the first to be degraded.
View Article and Find Full Text PDFFungal Biol
December 2024
Université de Lorraine, INRAE, IAM, F-54000, Nancy, France. Electronic address:
Plant metabolites have a great potential for limiting the spread of harmful fungi. However, a better understanding of the mode-of-action of these molecules and the defense systems developed by fungi to resist them, is needed to assess the benefits/risks of using them as antifungal treatment. White-rot fungi are excellent models in this respect, as they have adapted to the hostile habitat that is wood.
View Article and Find Full Text PDFBioresour Technol
February 2025
Department of Soil, Water, and Climate, University of Minnesota, 1991 Upper Buford Circle, 439 Borlaug Hall, St. Paul, MN 55108, USA; BioTechnology Institute, University of Minnesota, 140 Gortner Lab, 1479 Gortner Ave., St. Paul, MN 55108, USA. Electronic address:
Woodchip bioreactor (WBR) is a promising technology for the removal of nitrate from agricultural drainage, although the performance of WBRs is dependent on the decomposition of lignocellulosic biomass and the carbon availability for microbial denitrification. Fungal species are more efficient than bacterial counterparts in driving wood decomposition; however, little is known about the fungal community structure and functions in saturated WBRs. In this study, we investigated the dynamics of the mycobiome in field-scale, constantly saturated WBRs located in Willmar, Minnesota, USA.
View Article and Find Full Text PDFJ Fungi (Basel)
September 2024
Oman Animal and Plant Genetic Resources Center (Mawarid), Ministry of Higher Education, Research and Innovation, P.O. Box 515, AlKhoud 123, Oman.
Int J Syst Evol Microbiol
September 2024
Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!