Conformational changes in redox pairs of protein structures.

Protein Sci

Structural and Computational Biology Program, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia.

Published: August 2009

Disulfides are conventionally viewed as structurally stabilizing elements in proteins but emerging evidence suggests two disulfide subproteomes exist. One group mediates the well known role of structural stabilization. A second redox-active group are best known for their catalytic functions but are increasingly being recognized for their roles in regulation of protein function. Redox-active disulfides are, by their very nature, more susceptible to reduction than structural disulfides; and conversely, the Cys pairs that form them are more susceptible to oxidation. In this study, we searched for potentially redox-active Cys Pairs by scanning the Protein Data Bank for structures of proteins in alternate redox states. The PDB contains over 1134 unique redox pairs of proteins, many of which exhibit conformational differences between alternate redox states. Several classes of structural changes were observed, proteins that exhibit: disulfide oxidation following expulsion of metals such as zinc; major reorganisation of the polypeptide backbone in association with disulfide redox-activity; order/disorder transitions; and changes in quaternary structure. Based on evidence gathered supporting disulfide redox activity, we propose disulfides present in alternate redox states are likely to have physiologically relevant redox activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2776962PMC
http://dx.doi.org/10.1002/pro.175DOI Listing

Publication Analysis

Top Keywords

alternate redox
12
redox states
12
redox pairs
8
cys pairs
8
proteins exhibit
8
redox activity
8
redox
7
conformational changes
4
changes redox
4
pairs
4

Similar Publications

Antioxidant Responses and Redox Regulation Within Plant-Beneficial Microbe Interaction.

Antioxidants (Basel)

December 2024

Copenhagen Plant Science Centre, Faculty of Science, University of Copenhagen, 1870 Frederiksberg, Denmark.

The increase in extreme climate events associated with global warming is a great menace to crop productivity nowadays. In addition to abiotic stresses, warmer conditions favor the spread of infectious diseases affecting plant performance. Within this context, beneficial microbes constitute a sustainable alternative for the mitigation of the effects of climate change on plant growth and productivity.

View Article and Find Full Text PDF

Turning the band alignment of carbon dots for visible-light-driven enzymatic asymmetric reduction of aromatic ketone.

Int J Biol Macromol

January 2025

Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education; College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China. Electronic address:

Keto reductases are crucial NAD(P)H-dependent enzymes used for the enantioselective synthesis of alcohols from prochiral ketones. Typically, the NADPH cofactor is regenerated through a second enzyme and/or substrate. However, photocatalytic cofactor regeneration using water as a sacrificial electron and hydrogen donor presents a promising alternative, albeit a challenging one.

View Article and Find Full Text PDF

The reverse water gas shift reaction (RWGS) mechanism study on the γ-MoC(100) surface.

RSC Adv

January 2025

Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University Taiyuan 030006 China

CO conversion and reuse technology are crucial for alleviating environmental stress and promoting carbon cycling. Reverse water gas shift (RWGS) reaction can transform inert CO into active CO. Molybdenum carbide (MoC) has shown good performance in the RWGS reaction, and different crystalline phases exhibit distinct catalytic behaviors.

View Article and Find Full Text PDF

Application of Online Multi-Internal Standard Calibration for Determination of Iodine by ICP-MS.

J Mass Spectrom

January 2025

Physical and Chemical Department, The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Nanchang Centre for Disease Control and Prevention, Nanchang, China.

This study presents a comprehensive evaluation of the application of online multi-internal standard calibration (M.ISC) in determining iodine concentrations through inductively coupled plasma mass spectrometry (ICP-MS). Notably, M.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated chrysin's effectiveness as a treatment for memory decline caused by amyloid-beta (Aβ) exposure, a model of Alzheimer's disease in mice.
  • Mice given Aβ through intranasal administration experienced significant memory loss and increased IL-17 signaling, leading to higher expressions of inflammatory markers.
  • However, treatment with chrysin improved memory and reduced inflammation by downregulating IL-17 signaling and restoring redox balance in the brain.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!