Protaetiamycine is an insect defensin, a naturally occurring 43-amino-acid-residue antimicrobial peptide derived from the larvae of the beetle Protaetia brevitarsis. In a previous work that aimed at developing short antibiotic peptides, we designed 9-mer peptide analogs of protaetiamycine. Among them, RLWLAIGRG-NH2 showed good antifungal activity against Candida albicans. In this study, we designed four 9-mer peptide analogs based on the sequence of RLWLAIGRG-NH2, in which Gly or Ile was substituted with Arg, Lys, or Trp to optimize the balance between the hydrophobicity and cationicity of the peptides and to increase bacterial cell selectivity. We measured their toxicity to bacteria and mammalian cells as well as their ability to permeabilize model phospholipid membranes. Substitution of Arg for Gly9 at the C-terminus (9Pbw1) resulted in two- to fourfold improvement in antibacterial activity. Further substitution of Gly7 with Lys (9Pbw2 and 9Pbw4) caused four- to eightfold improvement in the antibacterial activity without increase in cytotoxocity, while substitution of Gly7 with Trp (9Pbw3) increased cytotoxicity as well as antibacterial activity. The peptides 9Pbw2 and 9Pbw4 with the highest bacterial cell selectivity were not effective in depolarizing the membrane of Staphylococcus aureus cytoplasmic membranes and showed almost no leakage of a fluorescent dye entrapped within the vesicles. Gel-retardation experiments indicated that 9Pbw2 and 9Pbw4 inhibited the migration of DNA at concentrations >20 microM. Three positively charged residues at the C-terminus in 9Pbw2 and 9Pbw4 may facilitate effective penetration into the negatively charged phospholipid membrane of bacteria. The results obtained in this study suggest that the bactericidal action of our potent antibacterial peptides, namely 9Pbw2 and 9Pbw4, may be attributed to the inhibition of the functions of intracellular components after penetration of the bacterial cell membrane.

Download full-text PDF

Source
http://dx.doi.org/10.1002/psc.1156DOI Listing

Publication Analysis

Top Keywords

9pbw2 9pbw4
20
peptide analogs
12
bacterial cell
12
antibacterial activity
12
antimicrobial peptide
8
analogs protaetiamycine
8
designed 9-mer
8
9-mer peptide
8
cell selectivity
8
improvement antibacterial
8

Similar Publications

Protaetiamycine is an insect defensin, derived from the larvae of the beetle Protaetia brevitarsis. In our previous work, we designed 9-mer peptide analogs of protaetiamycine, including 9Pbw2 (RLWLAIKRR-NH(2) ), 9Pbw3 (RLWLAIWRR-NH(2) ), and 9Pbw4 (RLWLAWKRR-NH(2) ). 9Pbw2 and 9Pbw4 showed high antimicrobial activity without cytotoxicity, while 9Pbw3 with higher hydrophobicity compared to 9Pbw2 and 9Pbw4 showed high cytotoxicity as well as high antimicrobial activity (Shin et al.

View Article and Find Full Text PDF

A novel antifungal analog peptide derived from protaetiamycine.

Mol Cells

November 2009

School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 702-701, Korea.

Previously, the 9-mer analog peptides, 9Pbw2 and 9Pbw4, were designed based on a defensin-like peptide, protaetiamycine isolated from Protaetia brevitarsis. In this study, antifungal effects of the analog peptides were investigated. The antifungal susceptibility testing exhibited that 9Pbw4 contained more potent antifungal activities than 9Pbw2.

View Article and Find Full Text PDF

Protaetiamycine is an insect defensin, a naturally occurring 43-amino-acid-residue antimicrobial peptide derived from the larvae of the beetle Protaetia brevitarsis. In a previous work that aimed at developing short antibiotic peptides, we designed 9-mer peptide analogs of protaetiamycine. Among them, RLWLAIGRG-NH2 showed good antifungal activity against Candida albicans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!