Photonic sensor devices for explosive detection.

Anal Bioanal Chem

LaserApplicationCenter, Clausthal University of Technology, Energiecampus, Am Stollen 19, Haus 3, 38640, Goslar, Germany.

Published: September 2009

For the sensitive online and in situ detection of gaseous species, optical methods are ideally suited. In contrast to chemical analysis, no sample preparation is necessary and therefore spectroscopic methods should be favorable both in respect of a fast signal recovery and economically because no disposal is needed. However, spectroscopic methods are currently not widely used for security applications. We review photonic sensor devices for the detection of explosives in the gas phase as well as the condensed phase and the underlying spectroscopic techniques with respect to their adaptability for security applications, where high sensitivity, high selectivity, and a low false-alarm rate are of importance. The measurements have to be performed under ambient conditions and often remote handling or even operation in standoff configuration is needed. For handheld and portable equipment, special attention is focused on the miniaturization and examples for already-available sensor devices are given.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-009-2934-2DOI Listing

Publication Analysis

Top Keywords

sensor devices
12
photonic sensor
8
spectroscopic methods
8
security applications
8
devices explosive
4
explosive detection
4
detection sensitive
4
sensitive online
4
online situ
4
situ detection
4

Similar Publications

Thermophysical properties of graphene reinforced with polymethyl methacrylate nanoparticles for technological applications: a molecular model.

J Mol Model

January 2025

Escuela Superior de Física y Matemáticas, IPN S/N, Edificio 9 de la Unidad Profesional "Adolfo López Mateos", Col. Lindavista, Alc. Gustavo A. Madero, 07738, Mexico City, Mexico.

Context: "Nanostructure of graphene-reinforced with polymethyl methacrylate" (PMMA-G), and vice versa, is investigated using its molecular structure, in the present work. The PMMA-G nanostructure was constructed by bonding PMMA with graphene nanosheet in a sense to get three different configurations. Each configuration consisted of polymeric structures with three degrees of polymerization (such as monomers, dimers, and trimers polymers, respectively).

View Article and Find Full Text PDF

Background: Effects of subthalamic nucleus deep brain stimulation (STN-DBS) on neuropsychiatric symptoms of Parkinson's disease (PD) remain debated. Sensor technology might help to objectively assess behavioural changes after STN-DBS.

Case Presentation: 5 PD patients were assessed 1 before and 5 months after STN-DBS with the Movement Disorders Society Unified Parkinson's Disease Rating Scale part III in the medication ON (plus postoperatively stimulation ON) condition, the Montreal Cognitive Assessment, the Questionnaire for Impulsive-Compulsive Behaviors in Parkinson's Disease Rating Scale present version, the Hospital Anxiety and Depression Scale and the Starkstein Apathy Scale.

View Article and Find Full Text PDF

Digital Health for Asthma Management: Electronic Medication Monitoring for Adherence as a Case Example.

J Allergy Clin Immunol Pract

January 2025

Breathing Institute, Children's Hospital Colorado, Department of Pediatrics, Pediatric Pulmonary and Sleep Medicine Section, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO. Electronic address:

Digital health is an umbrella term for components of healthcare utilizing computer platforms, software, connectivity and sensors to augment the recording, documentation and communication of clinical information. The functions of digital health may be viewed in three domains: 1) the repository for patient information, 2) monitoring devices and 3) communication tools. Monitoring devices have provided robust information as diagnostic and prognostic tools in office and hospital settings.

View Article and Find Full Text PDF

Detection and analysis of organochlorine pesticides (OCP) residue is getting significant research importance because of their extensive use despite their hazardous effects on the health of people and the ecosystem. Despite the implementation of regulations and bans to safeguard human health and the environment, reports frequently reveal the continued use of these harmful chemicals in quantities exceeding the recommended limits set by regulatory boards. Data on the use of OCP from India, the most populous country, and African countries is not very encouraging.

View Article and Find Full Text PDF

Rapid pesticide residues detection by portable filter-array hyperspectral imaging.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072 China. Electronic address:

The detection of pesticide residues in agricultural products is crucial for ensuring food safety. However, traditional methods are often constrained by slow processing speeds and a restricted analytical scope. This study presents a novel method that uses filter-array-based hyperspectral imaging enhanced by a dynamic filtering demosaicking algorithm, which significantly improves the speed and accuracy of detecting pesticide residues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!