Analytical workflow technology, sometimes also called data pipelining, is the fundamental component that provides the scalable analytical middleware that can be used to enable the rapid building and deployment of an analytical application. Analytical workflows enable researchers, analysts and informaticians to integrate and access data and tools from structured and non-structured data sources so that analytics can bridge different silos of information; compose multiple analytical methods and data transformations without coding; rapidly develop applications and solutions by visually constructing analytical workflows that are easy to revise should the requirements change; access domain-specific extensions for specific projects or areas, for example, text extraction, visualisation, reporting, genetics, cheminformatics, bioinformatics and patient-based analytics; automatically deploy workflows directly into web portals and as web services to be part of a service-oriented architecture (SOA). By performing workflow building, using a middleware layer for data integration, it is a relatively simple exercise to visually design an analytical process for data analysis and then publish this as a service to a web browser. All this is encapsulated into what can be referred to as an 'Embedded Analytics' methodology which will be described here with examples covering different scientifically focused data analysis problems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-60761-175-2_14 | DOI Listing |
JMIR Form Res
January 2025
Larner College of Medicine, University of Vermont, Burlington, VT, United States.
Background: Social media has become a widely used way for people to share opinions about health care and medical topics. Social media data can be leveraged to understand patient concerns and provide insight into why patients may turn to the internet instead of the health care system for health advice.
Objective: This study aimed to develop a method to investigate Reddit posts discussing health-related conditions.
JMIR Form Res
January 2025
Northwestern Medicine, Chicago, IL, United States.
Background: Patient recruitment and data management are laborious, resource-intensive aspects of clinical research that often dictate whether the successful completion of studies is possible. Technological advances present opportunities for streamlining these processes, thus improving completion rates for clinical research studies.
Objective: This paper aims to demonstrate how technological adjuncts can enhance clinical research processes via automation and digital integration.
JMIR AI
January 2025
Department of Information Systems and Business Analytics, Iowa State University, Ames, IA, United States.
Background: In the contemporary realm of health care, laboratory tests stand as cornerstone components, driving the advancement of precision medicine. These tests offer intricate insights into a variety of medical conditions, thereby facilitating diagnosis, prognosis, and treatments. However, the accessibility of certain tests is hindered by factors such as high costs, a shortage of specialized personnel, or geographic disparities, posing obstacles to achieving equitable health care.
View Article and Find Full Text PDFJMIR Med Inform
January 2025
Department of Systems Design Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON, Canada.
Background: While expert optometrists tend to rely on a deep understanding of the disease and intuitive pattern recognition, those with less experience may depend more on extensive data, comparisons, and external guidance. Understanding these variations is important for developing artificial intelligence (AI) systems that can effectively support optometrists with varying degrees of experience and minimize decision inconsistencies.
Objective: The main objective of this study is to identify and analyze the variations in diagnostic decision-making approaches between novice and expert optometrists.
JAMA Cardiol
January 2025
Center for Health Incentives and Behavioral Economics, University of Pennsylvania, Philadelphia.
Importance: A comprehensive lipid panel is recommended by guidelines to evaluate atherosclerotic cardiovascular disease risk, but uptake is low.
Objective: To evaluate whether direct outreach including bulk orders with and without text messaging increases lipid screening rates.
Design, Setting, And Participants: Pragmatic randomized clinical trial conducted from June 6, 2023, to September 6, 2023, at 2 primary care practices at an academic health system among patients aged 20 to 75 years with at least 1 primary care visit in the past 3 years who were overdue for lipid screening.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!