Our brain contains a multiplicity of neuronal networks. In many of these, information sent from presynaptic neurons travels through a variety of pathways of different distances, yet arrives at the postsynaptic cells at the same time. Such isochronicity is achieved either by changes in the conduction velocity of axons or by lengthening the axonal path to compensate for fast conduction. To regulate the conduction velocity, a change in the extent of myelination has recently been proposed in thalamocortical and other pathways. This is in addition to a change in the axonal diameter, a previously identified, more accepted mechanism. Thus, myelination is not a simple means of insulation or acceleration of impulse conduction, but it is rather an exquisite way of actively regulating the timing of communication among various neuronal connections with different length.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2708965 | PMC |
http://dx.doi.org/10.3389/neuro.05.012.2009 | DOI Listing |
J Neuroeng Rehabil
January 2025
Department of BioMechanical Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628 CD, South-Holland, The Netherlands.
Duchenne Muscular Dystrophy (DMD) progressively leads to loss of limb function due to muscle weakness. The incurable nature of the disease shifts the focus to improving quality of life, including assistive supports to improve arm function. Over time, the passive joint impedance (Jimp) of people with DMD increases.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China.
This study investigated the correlation between quantitative echocardiographic characteristics within 3 days of birth and necrotizing enterocolitis (NEC) and its severity in preterm infants. A retrospective study was conducted on 168 preterm infants with a gestational age of < 34 weeks. Patients were categorized into NEC and non-NEC groups.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, Devchand College, Arjunnagar, Kolhapur, MH, 591237, India.
Acoustical properties are essential for understanding the molecular interactions in fluids, as they influence the physicochemical behavior of liquids and determine their suitability for diverse applications. This study investigated the acoustical parameters of silver nanoparticles (Ag NPs), reduced graphene oxide (rGO), and Ag/rGO nanocomposite nanofluids at varying concentrations. Ag NPs and Ag/rGO nanocomposites were synthesized via a Bos taurus indicus (BTI) metabolic waste-assisted method and characterized using advanced techniques, including XRD, TEM, Raman, DLS, zeta potential, and XPS.
View Article and Find Full Text PDFSci Rep
January 2025
University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan, 680-749, Republic of Korea.
This study employed large eddy simulation (LES) with the wall-adapting local eddy-viscosity (WALE) model to investigate transitional flow characteristics in an idealized model of a healthy thoracic aorta. The OpenFOAM solver pimpleFoam was used to simulate blood flow as an incompressible Newtonian fluid, with the aortic walls treated as rigid boundaries. Simulations were conducted for 30 cardiac cycles and ensemble averaging was employed to ensure statistically reliable results.
View Article and Find Full Text PDFSci Total Environ
January 2025
Center for Marine Sensors, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, 26382 Wilhelmshaven, Germany.
Microplastics (MP) are known to be ubiquitous. The pathways and fate of these contaminants in the marine environment are receiving increasing attention, but still knowledge gaps exist. In particular, the link between mass-based MP quantification and oceanographic parameters is often lacking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!