Incision-dependent and error-free repair of (CAG)(n)/(CTG)(n) hairpins in human cell extracts.

Nat Struct Mol Biol

Graduate Center for Toxicology and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.

Published: August 2009

Expansion of CAG/CTG trinucleotide repeats is associated with certain familial neurological disorders, including Huntington's disease. Increasing evidence suggests that formation of a stable DNA hairpin within CAG/CTG repeats during DNA metabolism contributes to their expansion. However, the molecular mechanism(s) by which cells remove CAG/CTG hairpins remain unknown. Here we demonstrate that human cell extracts can catalyze error-free repair of CAG/CTG hairpins in a nick-directed manner. The repair system specifically targets CAG/CTG tracts for incisions in the nicked DNA strand, followed by DNA resynthesis using the continuous strand as a template, thereby ensuring CAG/CTG stability. Proliferating cell nuclear antigen (PCNA) is required for the incision step of the hairpin removal, which uses distinct endonuclease activities for individual CAG/CTG hairpins depending on their strand locations and/or secondary structures. We discuss the implications of these data for understanding the etiology of neurological diseases and trinucleotide repeat instability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5039229PMC
http://dx.doi.org/10.1038/nsmb.1638DOI Listing

Publication Analysis

Top Keywords

cag/ctg hairpins
12
error-free repair
8
human cell
8
cell extracts
8
cag/ctg
7
incision-dependent error-free
4
repair cagn/ctgn
4
hairpins
4
cagn/ctgn hairpins
4
hairpins human
4

Similar Publications

CAG/CTG repeats are prone to expansion, causing several inherited human diseases. The initiating sources of DNA damage which lead to inaccurate repair of the repeat tract to cause expansions are not fully understood. Expansion-prone CAG/CTG repeats are actively transcribed and prone to forming stable R-loops with hairpin structures forming on the displaced single-stranded DNA (S-loops).

View Article and Find Full Text PDF

Unlabelled: Hairpin forming expanded CAG/CTG repeats pose significant challenges to DNA replication which can lead to replication fork collapse. Long CAG/CTG repeat tracts relocate to the nuclear pore complex to maintain their integrity. Forks impeded by DNA structures are known to activate the DNA damage checkpoint, thus we asked whether checkpoint proteins play a role in relocation of collapsed forks to the nuclear periphery in .

View Article and Find Full Text PDF

Expansion of CAG and CTG (CWG) triplet repeats causes several inherited neurological diseases. The CWG repeat diseases are thought to involve complex pathogenic mechanisms through expanded CWG repeat-derived RNAs in a noncoding region and polypeptides in a coding region, respectively. However, an effective therapeutic approach has not been established for the CWG repeat diseases.

View Article and Find Full Text PDF

DNA trinucleotide repeat (TRs) expansion beyond a threshold often results in human neurodegenerative diseases. The mechanisms causing expansions remain unknown, although the tendency of TR ssDNA to self-associate into hairpins that slip along their length is widely presumed related. Here we apply single molecule FRET (smFRET) experiments and molecular dynamics simulations to determine conformational stabilities and slipping dynamics for CAG, CTG, GAC and GTC hairpins.

View Article and Find Full Text PDF

Short hairpin RNAs, or short hairpin RNAs (shRNAs), are a proven tool for gene knockdown and a promising therapeutic approach for suppression of disease-associated genes. The efficient preparation of shRNA-expressing vectors can sometimes become a bottleneck due to the complexity of shRNA hairpin sequence and structure, especially for repetitive or high GC-content targets. Here, we present improved shRNA cloning and validation methods that enabled efficient and rapid cloning of several shRNAs targeting disease-associated repeat expansions, including GGGGCC, CAG, CTG, CCTG, and CGG into modified pLKO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!