We have shown that fluorescent, 7-nitro-2,1,3-benzoxadiazol-4-yl amino (NBD)-conjugated neurosteroid analogs photopotentiate GABA(A) receptor function. These compounds seem to photosensitize a modification of receptor function, resulting in long-lived increases in responses to exogenous or synaptic GABA. Here we extend this work to examine the effectiveness of different fluorophore positions, conjugations, steroid structures, and fluorophores. Our results are generally in agreement with the idea that steroids with activity at GABA(A) receptors are the most potent photopotentiators. In particular, we find that an unnatural enantiomer of an effective photopotentiating steroid is relatively weak, excluding the idea that membrane solubility alone, which is identical for enantiomer pairs, is solely responsible for potent photopotentiation. Furthermore, there is a significant correlation between baseline GABA(A) receptor activity and photopotentiation. Curiously, both sulfated steroids, which bind a presumed external neurosteroid antagonist site, and hydroxysteroids, which bind an independent site, are effective. We also find that a rhodamine dye conjugated to a 5beta-reduced 3alpha-hydroxy steroid is a particularly potent and effective photopotentiator, with minimal baseline receptor activity up to 10 muM. Steroid conjugated fluorescein and Alexa Fluor 546 also supported photopotentiation, although the Alexa Fluor conjugate was weaker and required 10-fold higher concentration to achieve similar potentiation to the best NBD and rhodamine conjugates. Filling cells with steroid-conjugated or free fluorophores via whole-cell patch pipette did not support photopotentiation. FM1-43, another membrane-targeted, structurally unrelated fluorophore, also produced photopotentiation at micromolar concentrations. We conclude that further optimization of fluorophore and carrier could produce an effective, selective, light-sensitive GABA(A) receptor modulator.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2769041PMC
http://dx.doi.org/10.1124/mol.109.057687DOI Listing

Publication Analysis

Top Keywords

gabaa receptor
12
gabaa receptors
8
receptor function
8
receptor activity
8
alexa fluor
8
gabaa
5
receptor
5
photopotentiation
5
photodynamic effects
4
effects steroid-conjugated
4

Similar Publications

The motor symptoms of Parkinson's Disease are attributed to the degeneration of dopamine neurons in the substantia nigra pars compacta (SNc). Previous work in the MCI-Park mouse model has suggested that the loss of somatodendritic dopamine transmission predicts the development of motor deficits. In the current study, brain slices from MCI-Park mice were used to investigate dopamine signaling in the SNc prior to and through the onset of movement deficits.

View Article and Find Full Text PDF

The present study investigated the impact of GABAergic signaling and miRNA expression on glioblastoma multiforme (GBM) growth within the medial prefrontal cortex (mPFC) and its associated cognitive and emotional impairments. The implantation of C6 cells into the mPFC induced GBM in this brain region (referred to as the mPFC-GBM) in male Wistar rats via stereotaxic surgery, as confirmed by Magnetic Resonance Imaging (MRI), and Hematoxylin and Eosin (H&E) staining. Repeated microinjections of muscimol, a potent GABA receptor agonist, directly into the mPFC-GBM (1µg/rat/2.

View Article and Find Full Text PDF

Design, synthesis and structure-activity relationship of novel 1,2,4-triazolopyrimidin-5-one derivatives targeting GABA and Na1.2 with antiepileptic activity.

Eur J Med Chem

January 2025

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xiannongtan Street, Xicheng district, Beijing, 100050, China. Electronic address:

A novel class of 7-phenyl-[1,2,4]triazol-5(4H)-one derivatives was designed and synthesized, and their in vivo anticonvulsant activities were evaluated using subcutaneous pentylenetetrazole (Sc-PTZ) and maximal electroshock (MES) tests. Compounds 3u, 4f and 4k exhibited significant anticonvulsant activities in the Sc-PTZ model with ED values of 23.7, 17.

View Article and Find Full Text PDF

While benzodiazepines have been a mainstay of the pharmacotherapy of anxiety disorders, their short-term efficacy and risk of abuse have driven the exploration of alternative treatment approaches. The endocannabinoid (eCB) system has emerged as a key modulator of anxiety-related processes, with evidence suggesting dynamic interactions between the eCB system and the GABAergic system, the primary target of benzodiazepines. According to the existing literature, the activation of the cannabinoid receptors has been shown to exert anxiolytic effects, while their blockade or genetic deletion results in heightened anxiety-like responses.

View Article and Find Full Text PDF

Alpha6-containing GABA receptors - Novel targets for the treatment of schizophrenia.

Pharmacol Res

January 2025

Center for Brain Research, Department of Molecular Neurosciences, Medical University Vienna, Vienna, Austria. Electronic address:

α6-containing GABA receptors (α6GABARs) are strongly expressed in cerebellar granule cells and are of central importance for cerebellar functions. The cerebellum not only is involved in regulation of motor activity, but also in regulation of thought, cognition, emotion, language, and social behavior. Activation of α6GABARs enhances the precision of sensory inputs, enables rapid and coordinated movement and adequate responses to the environment, and protects the brain from information overflow.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!