Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
RNA secondary structure prediction using free energy minimization is one method to gain an approximation of structure. Constraints generated by enzymatic mapping or chemical modification can improve the accuracy of secondary structure prediction. We report a facile method that identifies single-stranded regions in RNA using short, randomized DNA oligonucleotides and RNase H cleavage. These regions are then used as constraints in secondary structure prediction. This method was used to improve the secondary structure prediction of Escherichia coli 5S rRNA. The lowest free energy structure without constraints has only 27% of the base pairs present in the phylogenetic structure. The addition of constraints from RNase H cleavage improves the prediction to 100% of base pairs. The same method was used to generate secondary structure constraints for yeast tRNA(Phe), which is accurately predicted in the absence of constraints (95%). Although RNase H mapping does not improve secondary structure prediction, it does eliminate all other suboptimal structures predicted within 10% of the lowest free energy structure. The method is advantageous over other single-stranded nucleases since RNase H is functional in physiological conditions. Moreover, it can be used for any RNA to identify accessible binding sites for oligonucleotides or small molecules.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2764423 | PMC |
http://dx.doi.org/10.1093/nar/gkp587 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!