Aims: We investigated the mechanism by which cannabinoid receptors-1 (CB1) and -2 (CB2) modulate inflammatory activities of macrophages.

Methods And Results: Real-time polymerase chain reaction showed the predominant CB2 expression in freshly isolated human monocytes. PMA, a potent inducer of differentiation, upregulated CB1 and increased CB1:CB2 transcript ratio from 1:17.5 to 1:3 in 5 days of culture. Immunohistochemistry showed that CB1 protein was colocalized in CD68- and CD36-positive macrophages in human atheroma. Through selective expression of CB1 or CB2 to thioglycollate-elicited peritoneal macrophages, we proved that CB1 and CB2 mediate opposing influences on the production of reactive oxygen species (ROS). Flow cytometry showed that cannabinoid-induced ROS production by macrophages was CB1-dependent. Immunoblotting assays confirmed that macrophage CB1, not CB2, induced phosphorylation of p38-mitogen-activated protein kinase, which modulated ROS production and the subsequent synthesis of tumour necrosis factor-alpha and monocyte chemoattractant protein-1. Pull-down assays showed that the Ras family small G protein, Rap1 was activated by CB2. Dominant-negative Rap1 profoundly enhanced CB1-dependent ROS production by macrophages, suggesting CB2 Rap1-dependently inhibits CB1-stimulated ROS production.

Conclusion: CB1 promotes pro-inflammatory responses of macrophages through ROS production, which is negatively regulated by CB2 through Rap1 activation. Blocking CB1 together with selective activation of CB2 may suppress pro-inflammatory responses of macrophages.

Download full-text PDF

Source
http://dx.doi.org/10.1093/cvr/cvp240DOI Listing

Publication Analysis

Top Keywords

cb1 cb2
20
ros production
16
cb1
9
cb2
9
production reactive
8
reactive oxygen
8
oxygen species
8
production macrophages
8
pro-inflammatory responses
8
responses macrophages
8

Similar Publications

Xixin Decoction's novel mechanism for alleviating Alzheimer's disease cognitive dysfunction by modulating amyloid-β transport across the blood-brain barrier to reduce neuroinflammation.

Front Pharmacol

January 2025

Key Research Laboratory for Prevention and Treatment of Cerebrospinal diseases, Shaanxi Provincial Administration of Traditional Chinese Medicine, Xianyang, China.

Purpose: Xixin Decoction (XXD) is a classical formula that has been used to effectively treat dementia for over 300 years. Modern clinical studies have demonstrated its significant therapeutic effects in treating Alzheimer's disease (AD) without notable adverse reactions. Nevertheless, the specific mechanisms underlying its efficacy remain to be elucidated.

View Article and Find Full Text PDF

International Symposium on Ruminant Physiology: The involvement of the endocannabinoid system in metabolic and inflammatory responses in dairy cows during negative energy balance.

J Dairy Sci

January 2025

Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Israel; Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.

The endocannabinoid system (ECS) is involved in the regulation of energy metabolism, immune function and reproduction in mammals. The ECS is consisted of the endocannabinoid (eCB) ligands, enzymes, and cannabinoid receptors. In mammals, the cannabinoid-1 receptor (CB1/CNR1) is expressed in the central nervous system and in peripheral tissues; and its activation increases anabolic processes.

View Article and Find Full Text PDF

Cannabicyclol ((±)-CBL), a minor phytocannabinoid, is largely unexplored, with its biological activity previously undocumented. We studied its conversion from cannabichromene (CBC) using various acidic catalysts. Montmorillonite (K30) in chloroform at room temperature had the highest yield (60%) with minimal byproducts.

View Article and Find Full Text PDF

This narrative review explores the benefits and risks of cannabinoids in kidney health, particularly in individuals with pre-existing renal conditions. It discusses the roles of cannabinoid receptor ligands (phytocannabinoids, synthetic cannabinoids, and endocannabinoids) in kidney physiology. The metabolism and excretion of these substances are also highlighted, with partial elimination occurring via the kidneys.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!