An enhanced electrokinetic (EK) remediation process coupled with permeable reaction barrier (PRB) of carbon nanotube coated with cobalt (CNT-Co) has been investigated for As(V) removal from soil under potential gradient of 2.0 V/cm for 5 days treatment. Results showed that removal efficiency of As(V) was greater than 70% in EK/CNT-Co system with EDTA as processing fluid, which was enhanced by a factor of 2.2 compared to EK system and EK/CNT systems. A better removal performance in EK/CNT-Co system was attributed to higher sorption of As(V) onto CNT-Co than onto CNT. Removal of As(V) in EK/CNT-Co system was mainly contributed by surface sorption on CNT-Co rather than by EK process. The surface characteristics of CNT-Co, which was qualified by SEM coupled with EDS, were clearly confirmed that arsenic was adsorbed on the passive layer surface. Among EK processes, As(V) removal was dominated by electroosmosis flow and electromigration in EK/CNT-Co system with groundwater and EDTA as processing fluid. An investigation with sequential extraction revealed that As(V) associated with soils was considerably shifted from strong binding forms, i.e., Fe-Mn oxide, organic, and residual, to weak binding forms, i.e., exchange and carbonate, after EK/CNT-Co treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2009.06.059 | DOI Listing |
J Hazard Mater
November 2009
Department of Civil and Environmental Engineering, National University of Kaohsiung, Nan-Tzu District, Kaohsiung City 811, Taiwan.
An enhanced electrokinetic (EK) remediation process coupled with permeable reaction barrier (PRB) of carbon nanotube coated with cobalt (CNT-Co) has been investigated for As(V) removal from soil under potential gradient of 2.0 V/cm for 5 days treatment. Results showed that removal efficiency of As(V) was greater than 70% in EK/CNT-Co system with EDTA as processing fluid, which was enhanced by a factor of 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!