Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The concept that domestic rainwater storage tanks may host sustainable microbial ecosystems has not previously been addressed. The bacterial diversity, cultivated from more than 80 samples from 22 tanks at various locations across eastern Australia, is presented here as prima facie evidence for the potential operation of a functional micro-ecology within rainwater storage systems. Cultivated isolates were found to comprise members of four major bacterial divisions; Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes, including more than 200 species from 80 different genera. The pattern of abundance distribution was typical of that observed in most natural communities, comprising a small number of abundant taxa and a multitude of rare taxa, while the specific composition resembled that previously described in a number of natural aquatic systems. Although Proteobacteria from alpha, beta and gamma sub-classes were dominant, a set of core taxa comprising representative genera from all four phyla could be identified. Coliform and other species specifically associated with faecal material comprised <15% of the species identified, and represented <1.5% of total average abundance. The composition of the cultivated populations and scope of diversity present, suggested that rainwater tanks may support functional ecosystems comprising complex communities of environmental bacteria, which may have beneficial implications for the quality of harvested rainwater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2009.06.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!