Retroviral Gag proteins encode small peptide motifs known as late domains that promote the release of virions from infected cells by interacting directly with host cell factors. Three types of retroviral late domains, with core sequences P(T/S)AP, YPX(n)L, and PPPY, have been identified. HIV-1 encodes a primary P(T/S)AP-type late domain and an apparently secondary late domain sequence of the YPX(n)L type. The P(T/S)AP and YPX(n)L motifs interact with the endosomal sorting factors Tsg101 and Alix, respectively. Although biochemical and structural studies support a direct binding between HIV-1 p6 and Alix, the physiological role of Alix in HIV-1 biology remains undefined. To elucidate the function of the p6-Alix interaction in HIV-1 replication, we introduced a series of mutations in the p6 Alix binding site and evaluated the effects on virus particle production and virus replication in a range of cell types, including physiologically relevant primary T cells and macrophages. We also examined the effects of the Alix binding site mutations on virion morphogenesis and single-cycle virus infectivity. We determined that the p6-Alix interaction plays an important role in HIV-1 replication and observed a particularly severe impact of Alix binding site mutations when they were combined with mutational inactivation of the Tsg101 binding site.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2744943PMC
http://dx.doi.org/10.1016/j.virol.2009.06.016DOI Listing

Publication Analysis

Top Keywords

binding site
16
hiv-1 replication
12
alix binding
12
role alix
8
alix hiv-1
8
late domains
8
pt/sap ypxnl
8
late domain
8
p6-alix interaction
8
site mutations
8

Similar Publications

Posttranslational modifications (PTMs) of proteins play critical roles in regulating many cellular events. Antibodies targeting site-specific PTMs are essential tools for detecting and enriching PTMs at sites of interest. However, fundamental difficulties in molecular recognition of both PTM and surrounding peptide sequence have hindered the efficient generation of highly sequence-specific anti-PTM antibodies.

View Article and Find Full Text PDF

Neurotransmitter release is triggered in microseconds by Ca-binding to the Synaptotagmin-1 C-domains and by SNARE complexes that form four-helix bundles between synaptic vesicles and plasma membranes, but the coupling mechanism between Ca-sensing and membrane fusion is unknown. Release requires extension of SNARE helices into juxtamembrane linkers that precede transmembrane regions (linker zippering) and binding of the Synaptotagmin-1 CB domain to SNARE complexes through a "primary interface" comprising two regions (I and II). The Synaptotagmin-1 Ca-binding loops were believed to accelerate membrane fusion by inducing membrane curvature, perturbing lipid bilayers, or helping bridge the membranes, but SNARE complex binding through the primary interface orients the Ca-binding loops away from the fusion site, hindering these putative activities.

View Article and Find Full Text PDF

Electron transfer in polysaccharide monooxygenase catalysis.

Proc Natl Acad Sci U S A

January 2025

California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720.

Polysaccharide monooxygenase (PMO) catalysis involves the chemically difficult hydroxylation of unactivated C-H bonds in carbohydrates. The reaction requires reducing equivalents and will utilize either oxygen or hydrogen peroxide as a cosubstrate. Two key mechanistic questions are addressed here: 1) How does the enzyme regulate the timely and tightly controlled electron delivery to the mononuclear copper active site, especially when bound substrate occludes the active site? and 2) How does this electron delivery differ when utilizing oxygen or hydrogen peroxide as a cosubstrate? Using a computational approach, potential paths of electron transfer (ET) to the active site copper ion were identified in a representative AA9 family PMO from (PMO9E).

View Article and Find Full Text PDF

The homo-dodecameric ring-shaped RNA binding attenuation protein (TRAP) from binds up to twelve tryptophan ligands (Trp) and becomes activated to bind a specific sequence in the 5' leader region of the operon mRNA, thereby downregulating biosynthesis of Trp. Thermodynamic measurements of Trp binding have revealed a range of cooperative behavior for different TRAP variants, even if the averaged apparent affinities for Trp have been found to be similar. Proximity between the ligand binding sites, and the ligand-coupled disorder-to-order transition has implicated nearest-neighbor interactions in cooperativity.

View Article and Find Full Text PDF

Computational-aided rational mutation design of pertuzumab to overcome active HER2 mutation S310F through antibody-drug conjugates.

Proc Natl Acad Sci U S A

January 2025

Laboratory of Precision Medicine and Biopharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.

Recurrent missense mutations in the human epidermal growth factor receptor 2 (HER2) have been identified across various human cancers. Among these mutations, the active S310F mutation in the HER2 extracellular domain stands out as not only oncogenic but also confers resistance to pertuzumab, an antibody drug widely used in clinical cancer therapy, by impeding its binding. In this study, we have successfully employed computational-aided rational design to undertake directed evolution of pertuzumab, resulting in the creation of an evolved pertuzumab variant named Ptz-SA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!