Objective: To determine the role of Dkkl1 in mouse development, viability, and fertility.
Design: Prospective experimental study.
Setting: Government research institution.
Animal(s): Mice of C57BL/6, B6D2F1/J, and 129X1/SvJ strains, as well as transgenic mice of mixed C57BL/6 and 129X1/SvJ strains were used for the studies.
Intervention(s): Expression of the Dkkl1 gene was characterized during early mouse development, and the effects of Dkkl1 ablation on reproduction and fertility were characterized in vitro and in vivo.
Main Outcome Measure(s): Dkkl1 RNA expression was determined by Northern blotting hybridization as well as quantitative reverse transcriptase-polymerase chain reaction assays. In vitro fertilization assays were used to assess fertility of sperm from male mice lacking functional Dkkl1.
Result(s): Dkkl1 is a gene unique to mammals that is expressed primarily in developing spermatocytes and its product localized in the acrosome of mature sperm. Here we show that Dkkl1 also is expressed in the trophectoderm/placental lineage. Surprisingly, embryos lacking DKKL1 protein developed into viable, fertile adults. Nevertheless, the ability of sperm that lacked DKKL1 protein to fertilize wild-type eggs was severely compromised in vitro. Because this defect could be overcome either by removal of the zona pellucida or by the presence of wild-type sperm, Dkkl1, either directly or indirectly, facilitates the ability of sperm to penetrate the zona pellucida. Penetration of the zona pellucida by Dkkl1(-) sperm was delayed in vivo as well as in vitro, but the delay in vivo was compensated by other factors during preimplantation development. Accordingly, Dkkl1-/- males offer an in vitro fertilization model for identifying factors that may contribute to infertility.
Conclusion(s): DKKL1 is a mammalian-specific, acrosomal protein that strongly affects in vitro fertilization, although the effect is attenuated in vivo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2838937 | PMC |
http://dx.doi.org/10.1016/j.fertnstert.2009.06.010 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Graduate School of Life and Environmental Sciences, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 400-8510 Kofu, Japan.
Background: Sperm represent a heterogeneous population crucial for male reproductive success. Additionally, sperm undergo dynamic changes during maturation and capacitation. Despite these well-established processes, the complex nature of sperm heterogeneity and membrane dynamics remains elusive.
View Article and Find Full Text PDFAntioxidants (Basel)
January 2025
College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
Due to oxidative damage and mitochondrial dysfunction, boar semen cryopreservation remains a significant challenge. This study investigates the effects of pyrroloquinoline quinone (PQQ), a mitochondrial-targeted antioxidant, on the post-thaw boar sperm quality during cryopreservation. Boar semen was diluted in a freezing extender containing different concentrations of PQQ (0, 10, 100, 1000, 10,000 nM).
View Article and Find Full Text PDFAnim Biotechnol
December 2025
Department of Plant, Soil and Food science, University of Bari, Aldomoro, Italy.
Variation in litter size (LS) in sheep is linked to genetic factors, including the Zona pellucida-3 (ZP3) gene, which plays a role in ovine reproductive processes. This study examined the association between ZP3 gene variations and LS in Kari sheep. Two groups of 160 Kari ewes were analysed: one consistently producing singletons and another producing twins, with occasional triplets.
View Article and Find Full Text PDFTheriogenology
January 2025
University of Murcia Dept. Physiology, Murcia, Spain; International Excellence Campus for Higher Education and Research "Campus Mare Nostrum" and Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain. Electronic address:
Stem Cell Rev Rep
January 2025
Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, University of Ghent, Salisburylaan 133, Merelbeke, B-9820, Belgium.
Over the past decade, research on embryo-derived extracellular vesicles (EVs) has unveiled their critical roles in embryonic development and intercellular communication. EVs secreted by embryos are nanoscale lipid bilayer vesicles that carry bioactive cargo, including proteins, lipids, RNAs, and DNAs, reflecting the physiological state of the source cells. These vesicles facilitate paracrine and autocrine signaling, influencing key processes such as cell differentiation, embryo viability, and endometrial receptivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!