AI Article Synopsis

  • The study discusses how Toll-like receptors and various stimuli trigger primary response genes in mammals, emphasizing the role of CpG-island promoters that allow easy activation without needing certain remodeling complexes.
  • Low nucleosome occupancy at CpG-island promoters contributes to their independence from SWI/SNF complexes, while non-CpG-island promoters rely on these complexes for stable nucleosome assembly and transcription factor assistance.
  • Different stimuli, like serum and tumor necrosis factor-alpha, prefer activating SWI/SNF-independent CpG-island genes, while interferon-beta favors the activation of SWI/SNF-dependent non-CpG-island genes, showcasing the diverse responses to microbial threats.

Article Abstract

We describe a broad mechanistic framework for the transcriptional induction of mammalian primary response genes by Toll-like receptors and other stimuli. One major class of primary response genes is characterized by CpG-island promoters, which facilitate promiscuous induction from constitutively active chromatin without a requirement for SWI/SNF nucleosome remodeling complexes. The low nucleosome occupancy at promoters in this class can be attributed to the assembly of CpG islands into unstable nucleosomes, which may lead to SWI/SNF independence. Another major class consists of non-CpG-island promoters that assemble into stable nucleosomes, resulting in SWI/SNF dependence and a requirement for transcription factors that promote selective nucleosome remodeling. Some stimuli, including serum and tumor necrosis factor-alpha, exhibit a strong bias toward activation of SWI/SNF-independent CpG-island genes. In contrast, interferon-beta is strongly biased toward SWI/SNF-dependent non-CpG-island genes. By activating a diverse set of transcription factors, Toll-like receptors induce both classes and others for an optimal response to microbial pathogens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2712736PMC
http://dx.doi.org/10.1016/j.cell.2009.04.020DOI Listing

Publication Analysis

Top Keywords

nucleosome remodeling
12
cpg islands
8
primary response
8
response genes
8
toll-like receptors
8
major class
8
transcription factors
8
unifying model
4
model selective
4
selective regulation
4

Similar Publications

In single cells, variably sized nanoscale chromatin structures are observed, but it is unknown whether these form a cohesive framework that regulates RNA transcription. Here, we demonstrate that the human genome is an emergent, self-assembling, reinforcement learning system. Conformationally defined heterogeneous, nanoscopic packing domains form by the interplay of transcription, nucleosome remodeling, and loop extrusion.

View Article and Find Full Text PDF

IRF1 cooperates with ISGF3 or GAF to form innate immune de novo enhancers in macrophages.

Sci Signal

January 2025

Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, USA.

Macrophages exposed to immune stimuli reprogram their epigenomes to alter their subsequent functions. Exposure to bacterial lipopolysaccharide (LPS) causes widespread nucleosome remodeling and the formation of thousands of de novo enhancers. We dissected the regulatory logic by which the network of interferon regulatory factors (IRFs) induces the opening of chromatin and the formation of de novo enhancers.

View Article and Find Full Text PDF

Cellular chromatin displays heterogeneous structure and dynamics, properties that control diverse nuclear processes. Models invoke phase separation of conformational ensembles of chromatin fibers as a mechanism regulating chromatin organization . Here we combine biochemistry and molecular dynamics simulations to examine, at single base-pair resolution, how nucleosome spacing controls chromatin phase separation.

View Article and Find Full Text PDF

MYB represses ζ-globin expression through upregulating ETO2.

Acta Biochim Biophys Sin (Shanghai)

January 2025

Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.

Reactivating the embryonic ζ-globin gene represents a potential therapeutic approach to ameliorate the severe clinical phenotype of α-thalassemia and sickle cell disease. The transcription factor MYB has been extensively proven to be a master regulator of the γ-globin gene, but its role in the regulation of ζ-globin remains incompletely understood. Here, we report a mechanistic study on the derepression of ζ-globin both and .

View Article and Find Full Text PDF

Regulatory Roles of SWI/SNF Chromatin Remodeling Complexes in Immune Response and Inflammatory Diseases.

Clin Rev Allergy Immunol

December 2024

Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, People's Republic of China.

The switch/sucrose non-fermentable (SWI/SNF) chromatin remodeling complexes (also referred to as BAF complexes) are composed of multiple subunits, which regulate the nucleosome translocation and chromatin accessibility. In recent years, significant advancements have been made in understanding mutated genes encoding subunits of the SWI/SNF complexes in cancer biology. Nevertheless, the role of SWI/SNF complexes in immune response and inflammatory diseases continues to attract significant attention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!