From specificity to sensitivity: how acute stress affects amygdala processing of biologically salient stimuli.

Biol Psychiatry

Donders Institute for Brain, Cognition and Behaviour, Medical Center, Radboud University Nijmegen, Nijmegen, The Netherlands.

Published: October 2009

Background: A vital component of an organism's response to acute stress is a surge in vigilance that serves to optimize the detection and assessment of threats to its homeostasis. The amygdala is thought to regulate this process, but in humans, acute stress and amygdala function have up to now only been studied in isolation. Hence, we developed an integrated design using functional magnetic resonance imaging to investigate the immediate effects of controlled stress induction on amygdala function.

Methods: In 27 healthy female participants, we studied brain responses to emotional facial stimuli, embedded in an either acutely stressful or neutral context by means of adjoining movie clips.

Results: A variety of physiological and psychological measures confirmed successful induction of moderate levels of acute stress. More importantly, this context manipulation shifted the amygdala toward higher sensitivity as well as lower specificity, that is, stress induction augmented amygdala responses to equally high levels for threat-related and positively valenced stimuli, thereby diminishing a threat-selective response pattern. Additionally, stress amplified sensory processing in early visual regions and the face responsive area of the fusiform gyrus but not in a frontal region involved in task execution.

Conclusions: A shift of amygdala function toward heightened sensitivity with lower levels of specificity suggests a state of indiscriminate hypervigilance under stress. Although this represents initial survival value in adverse situations where the risk for false negatives in the detection of potential threats should be minimized, it might similarly play a causative role in the sequelae of traumatic events.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopsych.2009.05.014DOI Listing

Publication Analysis

Top Keywords

acute stress
16
stress
8
stress amygdala
8
amygdala function
8
stress induction
8
amygdala
7
specificity sensitivity
4
acute
4
sensitivity acute
4
amygdala processing
4

Similar Publications

The DAF-2/insulin/insulin-like growth factor signaling (IIS) pathway plays an evolutionarily conserved role in regulating reproductive development, life span, and stress resistance. In Caenorhabditis elegans, DAF-2/IIS signaling is modulated by an extensive array of insulin-like peptides (ILPs) with diverse spatial and temporal expression patterns. However, the release dynamics and specific functions of these ILPs in adapting to different environmental conditions remain poorly understood.

View Article and Find Full Text PDF

Recently, the misuse of fentanyl and methamphetamine has increased in the United States. These drugs can be consumed via smoking a powder, which can subsequently contaminate air and surfaces with drug residue. With limited access to safe consumption sites, this misuse often occurs in public spaces such as public transit, leading to potential secondhand exposures among transit operators and riders.

View Article and Find Full Text PDF

Exercise in heart failure with preserved ejection fraction (HFpEF) remains a hot topic, although current treatment strategies have not been shown to improve the long-term prognosis of HFpEF. Previous studies have mostly focused on the roles of endurance training, the mechanisms underlying long-term voluntary exercise have not been elucidated. The purpose of the present analysis was to evaluate alterations in cardiac function in HFpEF mice (HFpEF-Sed) after 6 weeks of voluntary running (HFpEF-Ex), investigate mechanisms, and compare the effects with fluoxetine (HFpEF-FLX).

View Article and Find Full Text PDF

ERMP1 as a newly identified ER stress gatekeeper in chronic kidney disease.

Am J Physiol Renal Physiol

January 2025

Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.

ERMP1 is involved in the Unfolded Protein Response (UPR) pathway in response to endoplasmic reticulum (ER) stress. Given the pivotal role of ER stress in the pathogenesis of acute and chronic kidney diseases, we hypothesized that ERMP1 could be instrumental in the development of renal injury. analysis of RNA sequencing datasets from renal biopsies were exploited to assess the expression of ERMP1 in the kidney under normal or pathological conditions.

View Article and Find Full Text PDF

Background: Cholestasis plays a critical role in sepsis-associated liver injury (SALI). Intestine-derived fibroblast growth factor 19 (FGF19) is a key regulator for bile acid homeostasis. However, the roles and underlying mechanisms of FGF19 in SALI are still unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!