Background: We examined the expression of the mitochondrial selenoenzyme TrxR2 in the endothelial cell line EAhy926 under conditions known to modify its cytoplasmic counterpart TrxR1.

Methods: Cells were cultured with varying concentrations of selenite, sulforaphane or the Ca2+ ionophore A23187 for 72-h, prior to assay of TrxR concentration and activity. Further cultures underwent prolonged (7-day) Se-depletion before selenoprotein measurement.

Results: In Se-deficient cultures, neither Se, A23187 or sulforaphane affected TrxR2 concentration, while these treatments induced TrxR1 concentration (p<0.05). When co-incubated, optimal concentrations of Se (40 nM) and sulforaphane (4 microM) only modestly increased TrxR2 protein (approximately 1.3-fold), compared with TrxR1 (approximately 4-fold). In Se-deficient cells, TrxR activity was unaffected by sulforaphane or A23187. Prolonged Se-depletion caused a comparatively small reduction in TrxR2 (66% TrxR2 retained) against TrxR1 and glutathione peroxidase-1 activity (38% and 17% retained, respectively).

Conclusions: The relative resistance of TrxR2 to Se-deprivation and induction by sulforaphane and A23187 suggests TrxR2 lies near the top of the selenoprotein hierarchy in EAhy926 cells and exhibits near maximum expression under a range of culture conditions. In Se deficiency an inactive (possibly truncated) TrxR1 is produced in response to stimulus by sulforaphane and A23187.

General Significance: These observations underpin a likely critical antioxidant role for TrxR2 and TrxR1 in the endothelium.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbagen.2009.07.001DOI Listing

Publication Analysis

Top Keywords

modulation thioredoxin
4
thioredoxin reductase-2
4
reductase-2 expression
4
expression eahy926
4
eahy926 cells
4
cells implications
4
implications endothelial
4
endothelial selenoprotein
4
selenoprotein hierarchy
4
hierarchy background
4

Similar Publications

Exposure to saturated fatty acids (SFAs), such as palmitic acid, can lead to cellular metabolic dysfunction known as lipotoxicity. Although canonical adaptive metabolic processes like lipid storage or desaturation are known cellular responses to saturated fat exposure, the link between SFA metabolism and organellar biology remains an area of active inquiry. We performed a genome-wide CRISPR knockout screen in human epithelial cells to identify modulators of SFA toxicity.

View Article and Find Full Text PDF

Rampant phospholipid peroxidation initiated by iron causes ferroptosis unless this is restrained by cellular defences. Ferroptosis is increasingly implicated in a host of diseases, and unlike other cell death programs the physiological initiation of ferroptosis is conceived to occur not by an endogenous executioner, but by the withdrawal of cellular guardians that otherwise constantly oppose ferroptosis induction. Here, we profile key ferroptotic defence strategies including iron regulation, phospholipid modulation and enzymes and metabolite systems: glutathione reductase (GR), Ferroptosis suppressor protein 1 (FSP1), NAD(P)H Quinone Dehydrogenase 1 (NQO1), Dihydrofolate reductase (DHFR), retinal reductases and retinal dehydrogenases (RDH) and thioredoxin reductases (TR).

View Article and Find Full Text PDF

Molecular characterization, transcriptional profiling, and antioxidant activity assessment of nucleoredoxin (NXN) as a novel member of thioredoxin from red-lip mullet (Planiliza haematocheilus).

Fish Shellfish Immunol

December 2024

Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea. Electronic address:

Nucleoredoxin (NXN) is a prominent oxidoreductase enzyme, classified under the thioredoxin family, and plays a pivotal role in regulating cellular redox homeostasis. Although the functional characterization of NXN has been extensively studied in mammals, its role in fish remains relatively unexplored. In this study, the NXN gene from Planiliza haematocheilus (PhNXN) was molecularly and functionally characterized using in silico tools, expression analyses, and in vitro assays.

View Article and Find Full Text PDF

Aim: There remain limited therapies to treat thyroid eye disease (TED) orbital fibrosis, highlighting the urgency to develop novel targets. Transforming growth factor-β1 (TGF-β1)-induced myofibroblast transdifferentiation from orbital fibroblasts are important pathogenetic factor of TED. Endoplasmic reticulum (ER) stress may play a role in TED pathogenesis since it has been linked to liver, kidney, heart and lung fibrotic remodelling.

View Article and Find Full Text PDF

PX-12 modulates vorinostat-induced acetylation and methylation marks in CAL 27 cells.

Epigenomics

December 2024

Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.

Aim: The hypoxic tumor microenvironment (TME) in oral squamous cell carcinoma (OSCC) is primarily regulated by hypoxia-inducible factor-1 alpha (HIF-1α), impacting histone acetylation and methylation, which contribute to drug resistance. Vorinostat, a histone deacetylase inhibitor (HDACi), de-stabilizes HIF-1α, while PX-12, a thioredoxin-1 (Trx-1) inhibitor, prevents HIF-1α accumulation. Combining HDACi with a Trx-1 inhibitor may enhance efficacy and reduce resistance by increasing reactive oxygen species (ROS) in cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!