The present report identifies the enzymatic substrates of a member of the mammalian nitrilase-like (Nit) family. Nit2, which is widely distributed in nature, has been suggested to be a tumor suppressor protein. The protein was assumed to be an amidase based on sequence homology to other amidases and on the presence of a putative amidase-like active site. This assumption was recently confirmed by the publication of the crystal structure of mouse Nit2. However, the in vivo substrates were not previously identified. Here we report that rat liver Nit2 is omega-amidodicarboxylate amidohydrolase (E.C. 3.5.1.3; abbreviated omega-amidase), a ubiquitously expressed enzyme that catalyzes a variety of amidase, transamidase, esterase and transesterification reactions. The in vivo amidase substrates are alpha-ketoglutaramate and alpha-ketosuccinamate, generated by transamination of glutamine and asparagine, respectively. Glutamine transaminases serve to salvage a number of alpha-keto acids generated through non-specific transamination reactions (particularly those of the essential amino acids). Asparagine transamination appears to be useful in mitochondrial metabolism and in photorespiration. Glutamine transaminases play a particularly important role in transaminating alpha-keto-gamma-methiolbutyrate, a key component of the methionine salvage pathway. Some evidence suggests that excess alpha-ketoglutaramate may be neurotoxic. Moreover, alpha-ketosuccinamate is unstable and is readily converted to a number of hetero-aromatic compounds that may be toxic. Thus, an important role of omega-amidase is to remove potentially toxic intermediates by converting alpha-ketoglutaramate and alpha-ketosuccinamate to biologically useful alpha-ketoglutarate and oxaloacetate, respectively. Despite its importance in nitrogen and sulfur metabolism, the biochemical significance of omega-amidase has been largely overlooked. Our report may provide clues regarding the nature of the biological amidase substrate(s) of Nit1 (another member of the Nit family), which is a well-established tumor suppressor protein), and emphasizes a) the crucial role of Nit2 in nitrogen and sulfur metabolism, and b) the possible link of Nit2 to cancer biology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2745200 | PMC |
http://dx.doi.org/10.1016/j.biochi.2009.07.003 | DOI Listing |
Cancers (Basel)
December 2024
Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48076, USA.
Pancreatic cancer is the third leading cause of cancer-related mortality in the United States, with rising incidence and mortality. The receptor for advanced glycation end products (RAGE) and its ligands significantly contribute to pancreatic cancer progression by enhancing cell proliferation, fostering treatment resistance, and promoting a pro-tumor microenvironment via activation of the nuclear factor-kappa B (NF-κB) signaling pathways. This study validated pathway activation in human pancreatic cancer and evaluated the therapeutic efficacy of TTP488 (Azeliragon), a small-molecule RAGE inhibitor, alone and in combination with radiation therapy (RT) in preclinical models of pancreatic cancer.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain.
Glutaminase controls the first step in glutaminolysis, impacting bioenergetics, biosynthesis and oxidative stress. Two isoenzymes exist in humans, GLS and GLS2. GLS is considered prooncogenic and overexpressed in many tumours, while GLS2 may act as prooncogenic or as a tumour suppressor.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA.
Cancer is a complex genetic disorder characterized by abnormalities in both coding and regulatory non-coding RNAs. microRNAs (miRNAs) are key regulatory non-coding RNAs that modulate cancer development, functioning as both tumor suppressors and oncogenes. miRNAs play critical roles in cancer progression, influencing key processes such as initiation, promotion, and metastasis.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Institute of Immunology, Faculty of Medicine, Comenius University Bratislava, 813 72 Bratislava, Slovakia.
Gliomas are the most common and lethal forms of malignant brain tumors. We attempted to identify the role of the aging-suppressor gene and Klotho protein in the immunopathogenesis of gliomas. We examined genetic variants by PCR-RFLP and measured serum Klotho levels using the ELISA method.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland.
Aggressive variant prostate cancer (AVPC) is characterized by a molecular signature involving combined defects in , , and/or (AVPC-TSGs), identifiable through immunohistochemistry or genomic analysis. The reported prevalence of AVPC-TSG alterations varies widely, reflecting differences in assay sensitivity, treatment pressure, and disease stage evolution. Although robust clinical evidence is still emerging, the study of AVPC-TSG alterations in prostate cancer (PCa) is promising.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!