Previous studies have shown that different parts of the septal area may have opposite roles in the control of water intake and cardiovascular responses. In the present study we investigated the effects of electrolytic lesions of the intermediate nucleus of the lateral septal area (LSI) on cardiovascular and dipsogenic responses to intracerebroventricular (icv) angiotensin II (ANG II) and water intake induced by other different stimuli. Male Holtzman rats (280-320 g of body weight, n=6-16/group) with sham or electrolytic lesions of the LSI and a stainless steel cannula implanted into the lateral ventricle (LV) were used. The LSI lesions did not affect body weight or daily water intake. However, LSI lesions reduced water intake and pressor responses induced by icv ANG II (4.10(-2) nmol). The LSI lesions also slightly reduced water intake induced by 24 h of water deprivation or isoproterenol (30 microg/kg) subcutaneously, but did not affect water intake induced by intragastric 2 ml of 2 M NaCl load. The results suggest that LSI is part of the forebrain circuitry activated by ANG II to produce pressor and dipsogenic responses. However, the same nucleus is not involved in the dipsogenic responses to central osmoreceptor activation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.regpep.2009.07.002 | DOI Listing |
ACS ES T Water
January 2025
Department of Civil Engineering, The University of British Columbia, 6250 Applied Sciences Lane, Vancouver, British Columbia V6T 1Z4, Canada.
The present study evaluated the performance of a full-scale gravity-driven membrane filtration system with passive hydraulic fouling control (PGDMF) for drinking water treatment in a small community over a 3-year period. The PGDMF system consistently met the design flow and regulated water quality/performance parameters (i.e.
View Article and Find Full Text PDFACS ES T Water
January 2025
Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom.
Wet chemical sensors autonomously sample and analyze water using chemical assays. Their internal fluidics are not susceptible to biofouling (the undesirable accumulation of microorganisms, algae, and animals in natural waters) due to the harsh chemical environment and dark conditions; however, the sample intake and filter are potentially susceptible. This paper describes the use of copper intake filters, incorporated to prevent fouling, on two different wet chemical nitrate sensors that each use different variants of the Griess assay (in particular, different nitrate reduction steps) to quantify nitrate concentrations.
View Article and Find Full Text PDFFollowing a request from the European Commission, EFSA was asked to deliver a scientific opinion on the safety and efficacy of an essential oil from the aerial parts of × L. (peppermint oil) when used as a sensory additive in feed and in water for drinking for all animal species. The EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) concluded that that peppermint oil is safe for all animal species at the maximum use level of 12 mg/kg complete feed.
View Article and Find Full Text PDFVet Res Forum
December 2024
Department of Microbiology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Türkiye.
Fungal contamination in drinking water has garnered considerable attention over the past few decades, especially considering the detrimental consequences of pathogenic fungal species on both human and animal health. The formation of biofilms by certain species is a considerable factor contributing to the emergence of severe fungal infections. This research was designed to isolate and identify fungi, particularly those capable of forming biofilms from 150 samples of drinking water sourced from various locations.
View Article and Find Full Text PDFHeliyon
January 2025
Xinjiang Medical University, Urumqi, 830003, China.
Objective: To evaluate the drinking water quality in cities and towns in Xinjiang.
Methods: The testing data of 6543 water samples from the dry season and the wet season in 2023 were selected, and the drinking water quality in Xinjiang was evaluated and analyzed by using the Nemerow pollution index, the worst factor discriminant method and the weighted average method to calculate the comprehensive water quality index.
Results: The comprehensive index of drinking water quality in Xinjiang was 0.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!