Background: The direct examination of large, unbiased samples of young gene duplicates in their early stages of evolution is crucial to understanding the origin, divergence and preservation of new genes. Furthermore, comparative analysis of multiple genomes is necessary to determine whether patterns of gene duplication can be generalized across diverse lineages or are species-specific. Here we present results from an analysis comprising 68 duplication events in the Saccharomyces cerevisiae genome. We partition the yeast duplicates into ohnologs (generated by a whole-genome duplication) and non-ohnologs (from small-scale duplication events) to determine whether their disparate origins commit them to divergent evolutionary trajectories and genomic attributes.

Results: We conclude that, for the most part, ohnologs tend to appear remarkably similar to non-ohnologs in their structural attributes (specifically the relative composition frequencies of complete, partial and chimeric duplicates), the discernible length of the duplicated region (duplication span) as well as genomic location. Furthermore, we find notable differences in the features of S. cerevisiae gene duplicates relative to those of another eukaryote, Caenorhabditis elegans, with respect to chromosomal location, extent of duplication and the relative frequencies of complete, partial and chimeric duplications.

Conclusions: We conclude that the variation between yeast and worm duplicates can be attributed to differing mechanisms of duplication in conjunction with the varying efficacy of natural selection in these two genomes as dictated by their disparate effective population sizes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2728529PMC
http://dx.doi.org/10.1186/gb-2009-10-7-r75DOI Listing

Publication Analysis

Top Keywords

gene duplicates
12
saccharomyces cerevisiae
8
caenorhabditis elegans
8
duplication events
8
frequencies complete
8
complete partial
8
partial chimeric
8
duplication
7
duplicates
6
variation gene
4

Similar Publications

Context: Duplications occurring upstream of the SOX9 gene have been identified in a limited subset of patients with 46,XX testicular/ovotesticular differences/disorders of sex development (DSD). However, comprehensive understanding regarding their clinical presentation and diagnosis is limited.

Objective: To gain further insight into the diagnosis of a large cohort of 46,XX individuals with duplications upstream of SOX9.

View Article and Find Full Text PDF

High clinical utility of long-read sequencing for precise diagnosis of congenital adrenal hyperplasia in 322 probands.

Hum Genomics

January 2025

Department of Endocrine and Metabolic Diseases, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.

Background: The molecular genetic diagnosis of congenital adrenal hyperplasia (CAH) is very challenging due to the high homology between the CYP21A2 gene and its pseudogene CYP21A1P.

Methodology: This study aims to assess the clinical efficacy of targeted long-read sequencing (T-LRS) by comparing it with a control method based on the combined assay (NGS, Multiplex ligation-dependent probe amplification and Sanger sequencing) and to introduce T-LRS as a first-tier diagnostic test for suspected CAH patients to improve the precise diagnosis of CAH.

Results: A large cohort of 562 participants including 322 probands and 240 family members was enrolled for the perspective (96 probands) and prospective study (226 probands).

View Article and Find Full Text PDF

Background: Zinc finger homeodomain (ZF-HD) belongs to the plant-specific transcription factor (TF) family and is widely involved in plant growth, development and stress responses. Despite their importance, a comprehensive identification and analysis of ZF-HD genes in the soybean (Glycine max) genome and their possible roles under abiotic stress remain unexplored.

Results: In this study, 51 ZF-HD genes were identified in the soybean genome that were unevenly distributed on 17 chromosomes.

View Article and Find Full Text PDF

Evolutionary plasticity and functional repurposing of the essential metabolic enzyme MoeA.

Commun Biol

January 2025

Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Structural Microbiology Unit, F-75015, Paris, France.

MoeA, also known as gephyrin in higher eukaryotes, is an enzyme essential for molybdenum cofactor (Moco) biosynthesis and involved in GABA and GlyR receptor clustering at the synapse in animals. We recently discovered that Actinobacteria have a repurposed version of MoeA (Glp) linked to bacterial cell division. Since MoeA exists in all domains of life, our study explores how it gained multifunctionality over time.

View Article and Find Full Text PDF

The genetics of non-syndromic dentinogenesis imperfecta: a systematic review.

Eur Arch Paediatr Dent

January 2025

Dental School, The University of Western Australia, 17 Monash Avenue, Nedlands, WA, 6009, Australia.

Purpose: This systematic review aims to consolidate existing genetic and clinical data on non-syndromic dentinogenesis imperfecta (DI) to enhance understanding of its etiology.

Methods: Electronic databases were searched for genetic familial linkage studies published in English without time restrictions. Genetic familial linkage studies that reported cases of Shield's classifications: DI-II, DI-III or DD-II were included.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!