Spatio-temporal cluster analysis of county-based human West Nile virus incidence in the continental United States.

Int J Health Geogr

GeoInformatics Training, Research, Education, and Extension Center, Geography Department, University of Northern Iowa, Cedar Falls, IA, USA.

Published: July 2009

Background: West Nile virus (WNV) is a vector-borne illness that can severely affect human health. After introduction on the East Coast in 1999, the virus quickly spread and became established across the continental United States. However, there have been significant variations in levels of human WNV incidence spatially and temporally. In order to quantify these variations, we used Kulldorff's spatial scan statistic and Anselin's Local Moran's I statistic to uncover spatial clustering of human WNV incidence at the county level in the continental United States from 2002-2008. These two methods were applied with varying analysis thresholds in order to evaluate sensitivity of clusters identified.

Results: The spatial scan and Local Moran's I statistics revealed several consistent, important clusters or hot-spots with significant year-to-year variation. In 2002, before the pathogen had spread throughout the country, there were significant regional clusters in the upper Midwest and in Louisiana and Mississippi. The largest and most consistent area of clustering throughout the study period was in the Northern Great Plains region including large portions of Nebraska, South Dakota, and North Dakota, and significant sections of Colorado, Wyoming, and Montana. In 2006, a very strong cluster centered in southwest Idaho was prominent. Both the spatial scan statistic and the Local Moran's I statistic were sensitive to the choice of input parameters.

Conclusion: Significant spatial clustering of human WNV incidence has been demonstrated in the continental United States from 2002-2008. The two techniques were not always consistent in the location and size of clusters identified. Although there was significant inter-annual variation, consistent areas of clustering, with the most persistent and evident being in the Northern Great Plains, were demonstrated. Given the wide variety of mosquito species responsible and the environmental conditions they require, further spatio-temporal clustering analyses on a regional level is warranted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2717929PMC
http://dx.doi.org/10.1186/1476-072X-8-43DOI Listing

Publication Analysis

Top Keywords

continental united
16
united states
16
human wnv
12
wnv incidence
12
spatial scan
12
local moran's
12
west nile
8
nile virus
8
scan statistic
8
moran's statistic
8

Similar Publications

Blue carbon refers to organic carbon sequestered by oceanic and coastal ecosystems. This stock has gained global attention as a high organic carbon repository relative to other ecosystems. Within blue carbon ecosystems, tidally influenced wetlands alone store a disproportionately higher amount of organic carbon than other blue carbon systems.

View Article and Find Full Text PDF

Background: The results of many large randomized clinical trials (RCTs) have transformed clinical practice in gastroesophageal reflux disease (GERD) and esophageal hiatal hernia (HH). However, research waste (i.e.

View Article and Find Full Text PDF

This study introduces two refined rainfall anomaly indices-the Modified Rainfall Anomaly Index (MRAI) and the Standardized Rainfall Anomaly Index (SRAI)-to address limitations in the traditional Rainfall Anomaly Index (RAI). The existing RAI struggles to effectively capture extreme wet and dry rainfall conditions and relies on a simplistic formulation. To evaluate these indices on a continental scale, data from the Integrated Multi-Satellite Retrievals for GPM (IMERG) was used for the Conterminous United States (CONUS), enabling scalability to ungaged locations and beyond.

View Article and Find Full Text PDF

Street and park trees often endure harsher conditions, including increased temperatures and drier soil and air, than those found in urban or natural forests. These conditions can lead to shorter lifespans and a greater vulnerability to dieback. This literature review aimed to identify confirmed causes of street and park tree dieback in urban areas from around the world.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!