Prediction of biliary excretion in rats and humans using molecular weight and quantitative structure-pharmacokinetic relationships.

AAPS J

Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Amherst, NY 14260-1200, USA.

Published: September 2009

The aims were (1) to evaluate the molecular weight (MW) dependence of biliary excretion and (2) to develop quantitative structure-pharmacokinetic relationships (QSPKR) to predict biliary clearance (CL(b)) and percentage of administered dose excreted in bile as parent drug (PD(b)) in rats and humans. CL(b) and PD(b) data were collected from the literature for rats and humans. Receiver operating characteristic curve analysis was utilized to determine whether a MW threshold exists for PD(b). Stepwise multiple linear regression (MLR) was used to derive QSPKR models. The predictive performance of the models was evaluated by internal validation using the leave-one-out method and external test groups. A MW threshold of 400 Da was determined for PD(b) for anions in rats, while 475 Da was the cutoff for anions in humans. MW thresholds were not present for cations or cations/neutral compounds in either rats or humans. The QSPKR model for human CL(b) showed a significant correlation (R (2) = 0.819) with good prediction performance (Q (2) = 0.722). The model was further assessed using a test group, yielding a geometric mean fold-error of 2.68. QSPKR models with significant correlation and good predictability were also developed for CL(b) in rats and PD(b) data for anions or cation/neutral compounds in rats and humans. Both CL(b) and PD(b) data were further evaluated for subsets of MRP2 or P-glycoprotein substrates, and significant relationships were derived. QSPKR models were successfully developed for biliary excretion of non-congeneric compounds in rats and humans, providing a quantitative prediction of biliary clearance of compounds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2758117PMC
http://dx.doi.org/10.1208/s12248-009-9124-1DOI Listing

Publication Analysis

Top Keywords

rats humans
24
biliary excretion
12
pdb data
12
qspkr models
12
compounds rats
12
prediction biliary
8
rats
8
molecular weight
8
quantitative structure-pharmacokinetic
8
structure-pharmacokinetic relationships
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!